

U.C. 21002 Álgebra Linear I

26 de janeiro de 2012

- O exame é composto por 5 grupos de questões e respectivas alíneas, contém 9 página(s) e termina com a palavra FIM.
- Verifique o seu exemplar e, caso encontre alguma anomalia, dirija-se ao professor vigilante nos primeiros 15 minutos da prova, pois qualquer reclamação sobre defeito(s) de formatação e/ou de impressão que dificultem a leitura não será aceite depois deste período.
- As questões do grupo I (escolha múltipla) deverão ser respondidas no enunciado. As questões dos grupos II, III, IV e V deverão ser respondidas no Caderno de Prova.
 Todos os cabeçalhos e espaços reservados à identificação, deverão ser preenchidos com letra legível. Utilize unicamente tinta azul ou preta.
- Verifique no momento da entrega da(s) folha(s) de ponto se todas as páginas estão rubricadas pelo vigilante. Caso necessite de mais do que uma folha de ponto, deverá numerá-las no canto superior direito.
- Não serão aceites folhas de ponto dobradas ou danificadas. Exclui-se, para efeitos de classificação, toda e qualquer resposta apresentada em folhas de rascunho.
- Não é permitido o uso de máquina de calcular, nem de elementos de consulta.
- Tenha em atenção que o exame tem a duração máxima de 2 horas e 30 minutos.

Critérios de avaliação e cotação

- Com excepção das questões do grupo I (escolha múltipla), é necessário justificar todas as respostas e apresentar os cálculos efectuados. A apresentação de valores numéricos, como resposta, sem qualquer justificação, mesmo que correctos, terão a cotação zero.
- Cada questão do grupo I (escolha múltipla) tem a cotação de 1 valor. Por cada resposta errada serão descontados ¹/₃ valores. É considerada errada uma questão com mais de uma resposta. A classificação global mínima do grupo I é de 0 valores. As restantes questões terão as cotações seguintes:

II.	III.	IV.	V.
3.0 val.	4.0 val.	6.0 val.	3.0 val.

Nome:						
${ m N}^0$ de Estudante:	. B. I. n ⁰					
Turma Assinatura do Vigilante:						
I. Questões de escolha múltipla.						
Em cada questão de escolha múltipla aper verdadeira. Indique-a marcando × no qua alguma resposta, escreva "Anulado" junto a a que pretenda que seja considerada.	drado respectivo. Caso pretenda anular					
Questâ	ão 1					
Sejam os subespaços de \mathbb{R}^4 definidos por						
$F = \langle (1, 0, 1, 2), (G = \langle (0, 1, 0, 2), ($	$(0, 2, 0, 4), (1, -1, 1, 0)\rangle$ $(1, 1, 1, 1)\rangle.$					
Então:						
Questâ	ão 2					
Sejam $A, B \in M_{3\times 3}(\mathbb{R})$ duas matrizes t tem-se sempre:	ais que $det(A) = 1, det(B) = -1$. Então,					
	\square c) AB é invertível.					
	\Box d) $A - B$ não é invertível.					
Questâ	йо 3					
Considere as aplicações $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x-y,x+y), g(u,v) = uv$. En	$g:\mathbb{R}^2 \to \mathbb{R}$ definidas pelas expressões atão:					
a) Nuc $f = \{(1,1)\}.$	\Box c) f é sobrejetiva.					
\Box b) g é uma aplicação linear.	\Box d) 0 é valor próprio de f .					

Nome:						
N^0 de Estudante: B. I. n^0						
Turma Assinatura do Vigilante:						
Questão 4						
Seja $A_{\alpha}=\begin{bmatrix}1&2&1\\1&\alpha&3\\2&4&\alpha\end{bmatrix}\in M_{3\times 3}(\mathbb{R})$ e $b_{\alpha}=\begin{bmatrix}2\\\alpha\\4\end{bmatrix}\in M_{3\times 1}(\mathbb{R})$. Considere as afirmações seguintes:						
(i) A é invertível se e só se $\alpha \neq 2$.						
(ii) rank $A_{\alpha} = 2$ se e só se $\alpha = 2$.						
(iii) O sistema $A_{\alpha}\mathbf{x} = b_{\alpha}$ não tem soluções se $\alpha = 2$.						
Então:						
a) Nenhuma das afirmações é verdadeira.						
b) Apenas uma das afirmações é verdadeira.						

Responda aos grupos seguintes no Caderno de Prova

Nos grupos seguintes justifique todas as afirmações apresentando os raciocínios e os cálculos que efetuou para as obter.

- II. Diga se é verdadeira ou falsa cada uma das afirmações nas alíneas a) e b) seguintes, justificando cuidadosamente a sua resposta através de uma demonstração ou de um contra-exemplo, consoante o que for apropriado.
 - a) Seja $T \in M_{3\times 3}(\mathbb{R})$ tal que dimNuc(T) = 0. Então, o polinómio $p(x) = x^3 + x$ não pode ser o polinómio característico de T.
 - b) Considere os subespaços vetoriais de \mathbb{R}^3 definidos por

c) Apenas duas das afirmações são verdadeiras.

d) Todas as afirmações são verdadeiras.

$$X = \langle (1,0,1), (0,-1,1) \rangle, \quad Y = \{(x,y,z) \in \mathbb{R}^3 | x+y+z=0 \}.$$

Então X = Y.

Nome:		
N^0 de Estudante:		B. I. n ⁰
Turma	Assinatura do Vigilant	e:

III. Considere o sistema de equações lineares

$$\begin{cases} x+y+2z=1\\ 3x+y+z=3\\ 2x+5y-z=3 \end{cases}$$

Utilizando o método de eliminação de Gauss e indicando clara e pormenorizadamente todas as operações que efetuar, discuta a resolubilidade deste sistema e, caso ele seja resolúvel, determine todas as suas soluções.

IV. Seja $M_{2\times 2}(\mathbb{R})$ o espaço vetorial das matrizes 2×2 com elementos reais. Sejam

$$M_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, M_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, M_3 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, M_4 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

e considere a transformação linear $t: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ tal que

$$t(M_1) = M_2$$
, $t(M_2) = M_1$, $t(M_3) = 0 = t(M_4)$.

- a) Mostre que $\mathcal{B} = \{M_1, M_2, M_3, M_4\}$ é uma base de $M_{2\times 2}(\mathbb{R})$.
- b) Determine a matriz $\mathcal{M}(t, \mathcal{B}, \mathcal{B})$, que representa t em relação à base \mathcal{B} em ambos os espaços de partida e de chegada.
- c) Sendo $\mathcal{B}' = \left\{ E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ a base canónica de $M_{2\times 2}(\mathbb{R})$, determine $\mathcal{M}(t, \mathcal{B}', \mathcal{B}')$.
- d) Calcule os valores próprios de $\mathcal{M}(t, \mathcal{B}, \mathcal{B})$ e os correspondentes subespaços próprios¹.

V. Seja $R \in M_{n \times n}(\mathbb{R})$ uma qualquer matriz $n \times n$ de elementos reais e considere a matriz $S = R^{\mathsf{T}}R$.

- a) Mostre que S é uma matriz simétrica.
- b) Prove que, para qualquer $\mathbf{x} \in \mathbb{R}^n$, tem-se sempre $\mathbf{x}^\mathsf{T} S \mathbf{x} \geqslant 0$.
- c) Conclua que todos os valores próprios de S são números reais não-negativos.

FIM

RESOLUÇÃO

Nas questões de escolha múltipla não era necessário a apresentação dos cálculos e justificações que se seguem, mas apenas a indicação da alínea correspondente à resposta correta. Em praticamente todas as alíneas há várias maneiras corretas de resolver a questão colocada e a que aqui se apresenta é apenas uma delas, e não necessariamente a mais curta.

I. 1. Comecemos por observar que, sendo F e G dois subespaços de \mathbb{R}^4 , então F+G será também um subespaço de \mathbb{R}^4 , pelo que podemos excluir, à partida, a opção dada na alínea a). Vejamos o que podemos concluir quanto à dimensão de F. Construindo uma matriz que tem como linhas os vetores que geram F e usando a notação $U \xrightarrow[\ell_j \mapsto \ell_j + \beta \ell_k]{} V$ para dizer que V é obtida substituindo a linha ℓ_j de U por $\ell_j + \beta \ell_k$, pode-se escrever,

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 2 & 0 & 4 \\ 1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow[\ell_3 \mapsto \ell_3 - \ell_1]{\ell_3 \mapsto \ell_3 - \ell_1} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & -1 & 0 & -2 \end{bmatrix} \xrightarrow[\ell_3 \mapsto \ell_3 + \ell_2]{\ell_3 \mapsto \ell_3 + \ell_2} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Portanto, a dimensão de F é 2 e podemos eliminar a alínea b). Pelos cálculos anteriores concluimos que se pode escrever $F = \langle (1,0,1,2), (0,1,0,2) \rangle$, e, portanto, o vetor (0,1,0,2) é comum ao conjunto dos geradores de F e de G. Isto implica que pelo menos o espaço vetorial (unidimensional) gerado por este vetor tem também de ser comum a F e a G, ou seja, tem de ser um subconjunto de $F \cap G$. Ou seja, podemos, por isto, excluir a alínea d). Por exclusão de partes, a alínea correta é a c).

- 2. Pelas propriedades gerais do determinante, sabemos que $\det(AB) = (\det A)(\det B)$, pelo que, aplicando ao presente caso, $\det(AB) = 1 \times (-1) = -1 \neq 0$. Isto implica que AB é invertível. Conclui-se, assim, que a alínea correta é a c).
- 3. Claramente, g não é uma aplicação linear. Para concluir isto basta observar que (u,v)=(u,0)+(0,v) mas (se $u,v\neq 0$)

$$g(u, v) = uv \neq 0 = 0 + 0 = g(u, 0) + g(0, v).$$

Pode-se, portanto, eliminar a opção b), que era a única que se referia à aplicação g. Por outro lado, como $f(1,1)=(0,2)\neq(0,0)$, podemos eliminar também a hipótese a). Tomando a base canónica de \mathbb{R}^2 tem-se f(1,0)=(1,1) e f(0,1)=(-1,1), pelo que

$$\mathcal{M}(f, \mathbf{b. c. } \mathbb{R}^2, \mathbf{b. c. } \mathbb{R}^2) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

O polinómio característico desta matriz é $p(\lambda) = \det(\mathcal{M}(f, b. c. \mathbb{R}^2, b. c. \mathbb{R}^2) - \lambda I_2) = (1 - \lambda)^2 + 1 = \lambda^2 - 2\lambda + 2$. Aplicando a fórmula resolvente das equações polinomiais de segundo grau conclui-se que os zeros deste polinómio (que são os valores próprios da matriz $\mathcal{M}(f, b. c. \mathbb{R}^2, b. c. \mathbb{R}^2)$) são $\lambda_{\pm} = 2 \pm 2i$. Portanto, podemos eliminar a hipótese d) e, por exclusão de partes, concluir que a opção correta é a c).

4

4. Aplicando eliminação de Gauss à matriz ampliada, podemos escrever (com a notação usada na questão 1. acima),

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & \alpha & 3 & \alpha \\ 2 & 4 & \alpha & 4 \end{bmatrix} \xrightarrow[\ell_3 \mapsto \ell_3 - 2\ell_1]{} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & \alpha - 2 & 2 & \alpha - 2 \\ 0 & 0 & \alpha - 2 & 0 \end{bmatrix}$$

Conclui-se daqui que, A não é invertível se (e só se) $\alpha=2$, pois nesse caso a matriz é equivalente por linhas a uma matriz com característica $r(A_2)=2<3$. Aliás, o cálculo acima permite concluir que $r(A_\alpha)=2$ se e só se $\alpha=2$. Para além disto, observe-se que, se $\alpha=2$, a matriz ampliada que se obteve acima permite concluir (pela segunda linha) que $2z=0 \Leftrightarrow z=0$, a última linha (0z=0) não implica nenhuma restrição sobre z e a primeira reduz-se a x+2y=2, que, claramente, é uma equação com um número infinito de soluções. Portanto, o sistema $A_2\mathbf{x}=b_2$ tem soluções. Conclui-se, portanto, que a opção correta é a c): apenas duas das afirmações estão corretas.

- II. a) A afirmação é verdadeira. Suponhamos que p é o polinómio característico de T. Então, T teria três valores próprios distintos, $\lambda_1=0$, $\lambda_2=i$ e $\lambda_3=-i$. Portanto, designando por E_{λ} o espaço próprio correspondente ao valor próprio λ , ter-se-ia $\dim \operatorname{Nuc}(T)=\dim E_0=1$, o que contrariaria a hipótese de $\dim \operatorname{Nuc}(T)=0$.
 - b) Podemos começar por observar que o vetor (0,-1,1) de X satisfaz a equação que define Y mas se (x,y,z)=(1,0,1) tem-se $x+y+z=1+0+1=2\neq 0$, ou seja, o outro vetor gerador de X não está em Y. Consequentemente $X\not\subset Y$ e, portanto, também não se pode ter X=Y (note-se que temos X=Y, se, e só se, tivermos, simultaneamente, $X\subset Y$ e $X\supset Y$). Portanto, a afirmação é falsa.
- III. Com a notação já utilizada anteriormente, podemos escrever

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 3 & 1 & 1 & 3 \\ 2 & 5 & -1 & 3 \end{bmatrix} \xrightarrow[\ell_{2} \mapsto \ell_{2} - 3\ell_{1} \\ \ell_{3} \mapsto \ell_{3} - 2\ell_{1} \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -5 & 0 \\ 0 & 3 & -5 & 1 \end{bmatrix}$$

$$\xrightarrow[\ell_{3} \mapsto 2\ell_{3} + 3\ell_{2} \\ \ell_{3} \mapsto -\frac{1}{25}\ell_{3} \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & -5 & 0 \\ 0 & 0 & 1 & -\frac{2}{25} \end{bmatrix}$$

Nesta altura, designando por A a matriz dos coeficientes do sistema e por b o vetor dos termos do membro direito do sistema dado, podemos concluir que, como o sistema tem dimensão 3 e r(A) = r(A|b) = 3, o sistema é possível e determinado, tendo, portanto, uma única solução. Para determinarmos essa solução podemos continuar a aplicar o método de Gauss-Jordan à última matriz acima até obtermos

a matriz dos coeficientes na forma de uma matriz em escada reduzida:

$$\begin{bmatrix}
1 & 1 & 2 & | & 1 \\
0 & -2 & -5 & | & 0 \\
0 & 0 & 1 & | & -\frac{2}{25}
\end{bmatrix}
\xrightarrow[\ell_3 \mapsto 2\ell_3 + 3\ell_2]{\ell_3 \mapsto -\frac{1}{25}\ell_3}
\begin{bmatrix}
1 & 1 & 2 & | & 1 \\
0 & -2 & -5 & | & 0 \\
0 & 0 & 1 & | & -\frac{2}{25}
\end{bmatrix}$$

$$\xrightarrow[\ell_2 \mapsto \ell_2 + 5\ell_3]{\ell_1 \mapsto \ell_1 - 2\ell_3}
\begin{bmatrix}
1 & 1 & 0 & | & \frac{21}{25} \\
0 & -2 & 0 & | & -\frac{2}{5} \\
0 & 0 & 1 & | & -\frac{2}{25}
\end{bmatrix}$$

$$\xrightarrow[\ell_2 \mapsto -\frac{1}{2}\ell_2 \\ \ell_1 \mapsto \ell_1 - \ell_2
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & | & \frac{16}{25} \\
0 & 0 & 1 & | & -\frac{2}{25}
\end{bmatrix},$$

pelo que a solução do sistema é $x = \frac{16}{25}, y = \frac{1}{5}$ e $z = -\frac{2}{25}$.

IV. a) Considerando o isomorfismo linear

$$i: M_{2\times 2}(\mathbb{R}) \ni \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto (a, b, c, d) \in \mathbb{R}^4,$$

concluiremos que \mathcal{B} é uma base de $M_{2\times 2}(\mathbb{R})$ se e só se $i(\mathcal{B})$ for uma base de \mathbb{R}^4 . Como $i(\mathcal{B}) = \{i(M_1), i(M_2), i(M_3), i(M_4)\} = \{(1,0,1,1), (1,0,0,-1), (1,0,1,0), (0,1,0,0)\}$ Construindo uma matriz em que as linhas são os vetores $i(M_k)$ e transformando-a numa matriz em escada por operações sobre as linhas obtém-se

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow[\ell_3 \mapsto \ell_3 - \ell_1]{\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{bmatrix}} \xrightarrow[\ell_2 \leftrightarrow \ell_4]{\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}},$$

donde se conclui que r=4 e, portanto, todos os vetores $i(M_k)$ são linearmente independentes (como elementos de \mathbb{R}^4) e consequentemente todas as matrizes M_k são linearmente independentes (como elementos de $M_{2\times 2}(\mathbb{R})$) e \mathcal{B} constitui uma base de $M_{2\times 2}(\mathbb{R})$.

b) Atendendo ao enunciado, sabemos que a ação de t sobre os elementos da base $\mathcal B$ é

$$t(M_1) = \mathbf{0} \cdot M_1 + \mathbf{1} \cdot M_2 + \mathbf{0} \cdot M_3 + \mathbf{0} \cdot M_4$$

$$t(M_2) = 1 \cdot M_1 + 0 \cdot M_2 + 0 \cdot M_3 + 0 \cdot M_4$$

$$t(M_3) = \mathbf{0} \cdot M_1 + \mathbf{0} \cdot M_2 + \mathbf{0} \cdot M_3 + \mathbf{0} \cdot M_4$$

$$t(M_4) = 0 \cdot M_1 + 0 \cdot M_2 + 0 \cdot M_3 + 0 \cdot M_4,$$

pelo que se conclui que

c) Atendendo à ação de t sobre as matrizes M_k e tendo em conta que t é uma aplicação linear, tem-se

$$t(E_1) + t(E_3) + t(E_4) = t(E_1 + E_3 + E_4) = t(M_1) = M_2 = E_1 - E_4$$
 (1)

$$t(E_1) - t(E_4) = t(E_1 - E_4) = t(M_2) = M_1 = E_1 + E_3 + E_4$$
 (2)

$$t(E_1) + t(E_3) = t(E_1 + E_3) = t(M_3) = 0$$
 (3)

$$t(E_2) = t(M_4) = 0.$$
 (4)

Subtraindo a equação (3) da equação (1) obtém-se $t(E_4) = E_1 - E_4$. Substituindo este valor na equação (2) conclui-se que $t(E_1) = E_1 + E_3 + E_4 + (E_1 - E_4) = 2E_1 + E_3$ e substituindo este valor na equação (3) obtém-se $t(E_3) = -2E_1 - E_3$. Utilizando estes resultados e a equação (4) pode-se escrever

$$t(E_1) = 2 \cdot E_1 + 0 \cdot E_2 + 1 \cdot E_3 + 0 \cdot E_4$$

$$t(E_2) = 0 \cdot E_1 + 0 \cdot E_2 + 0 \cdot E_3 + 0 \cdot E_4$$

$$t(E_3) = (-2) \cdot E_1 + 0 \cdot E_2 + (-1) \cdot E_3 + 0 \cdot E_4$$

$$t(E_4) = 1 \cdot E_1 + 0 \cdot E_2 + 0 \cdot E_3 + (-1) \cdot E_4,$$

pelo que se conclui que

$$\mathcal{M}(t, \mathcal{B}', \mathcal{B}') = \begin{bmatrix} 2 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

d) Relembrando a matriz obtida na alínea b) e sabendo que os valores próprios de uma matriz são as raízes do seu polinómio característico, pode-se começar por calcular este polinómio:

$$p(\lambda) = \det(\mathcal{M}(t, \mathcal{B}, \mathcal{B}) - \lambda I_4) = \det\begin{bmatrix} -\lambda & 1 & 0 & 0\\ 1 & -\lambda & 0 & 0\\ 0 & 0 & -\lambda & 0\\ 0 & 0 & 0 & -\lambda \end{bmatrix} = (\lambda^2 - 1)\lambda^2.$$

Portanto, os valores próprios de $\mathcal{M}(t, \mathcal{B}, \mathcal{B})$ são $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = \lambda_4 = 0$ (ou seja, o valor próprio igual a zero tem multiplicidade algébrica igual a 2. Calculemos os correspondentes subespaços próprios, ou seja, os subespaços $\text{Nuc}(\mathcal{M}(t, \mathcal{B}, \mathcal{B}) - \lambda I_4)$.

• Para $\lambda_1 = 1$ o subespaço próprio correspondente é constituido pelos vetores $\mathbf{u} \in \mathbb{R}^4$ tais que

$$\mathbf{0} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} -u_1 + u_2 \\ u_1 - u_2 \\ -u_3 \\ -u_4 \end{bmatrix},$$

ou seja, são os vetores cujas componentes satisfazem $u_2 = u_1$ e $u_3 = u_4 = 0$. Portanto, o subespaço próprio correspondente ao valor próprio $\lambda_1 = 1$ é

$$E_1 = \langle (1, 1, 0, 0)^{\mathsf{T}} \rangle.$$

• Para $\lambda_2 = -1$ o subespaço próprio correspondente é constituido pelos vetores $\mathbf{u} \in \mathbb{R}^4$ tais que

$$\mathbf{0} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ u_1 + u_2 \\ u_3 \\ u_4 \end{bmatrix},$$

ou seja, são os vetores cujas componentes satisfazem $u_2 = -u_1$ e $u_3 = u_4 = 0$. Portanto, o subespaço próprio correspondente ao valor próprio $\lambda_1 = -1$ é

$$E_{-1} = \langle (1, -1, 0, 0)^{\mathsf{T}} \rangle.$$

• Finalmente, para o valor próprio nulo o subespaço próprio correspondente é constituido pelos vetores $\mathbf{u} \in \mathbb{R}^4$ tais que

ou seja, são os vetores cujas componentes satisfazem $u_1=u_2=0$ e que não têm restrições nos valores de u_3 nem de u_4 . Portanto, o subespaço próprio correspondente ao valor próprio nulo é

$$E_0 = \langle (0, 0, 1, 0)^\mathsf{T}, (0, 0, 0, 1)^\mathsf{T} \rangle.$$

- **V.** a) A matriz S é simétrica se e só se $S^{\mathsf{T}} = S$. Portanto, atendendo a que $(XY)^{\mathsf{T}} = Y^{\mathsf{T}}X^{\mathsf{T}}$ e $(X^{\mathsf{T}})^{\mathsf{T}} = X$ e tendo em conta a definição de S, tem-se $S^{\mathsf{T}} = (R^{\mathsf{T}}R)^{\mathsf{T}} = R^{\mathsf{T}}(R^{\mathsf{T}})^{\mathsf{T}} = R^{\mathsf{T}}R = S$, pelo que se conclui que S é uma matriz simétrica.
 - b) Pela definição de S tem-se

$$\mathbf{x}^\mathsf{T} S \mathbf{x} = \mathbf{x}^\mathsf{T} R^\mathsf{T} R \mathbf{x} = (\mathbf{x}^\mathsf{T} R^\mathsf{T})(R \mathbf{x}) = (R \mathbf{x})^\mathsf{T} (R \mathbf{x}).$$

Agora, denotando por r_{ij} os elementos da matriz R e por x_j as componentes do vetor \mathbf{x} , podemos escrever

$$R\mathbf{x} = \begin{bmatrix} \sum_{j=1}^{n} r_{1j}x_j \\ \sum_{j=1}^{n} r_{2j}x_j \\ \vdots \\ \sum_{j=1}^{n} r_{nj}x_j \end{bmatrix}$$

e portanto

$$(R\mathbf{x})^{\mathsf{T}}(R\mathbf{x}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} r_{ij} x_{j}\right)^{2} \geqslant 0$$

c) Recordemos que λ é um valor próprio de S se e só se existe um vetor não nulo \mathbf{x} tal que $S\mathbf{x} = \lambda\mathbf{x}$. Seja λ um qualquer valor próprio de S e \mathbf{x} um correspondente vetor próprio. Então, multiplicando à esquerda por \mathbf{x}^{T} ambos os membros da igualdade $S\mathbf{x} = \lambda\mathbf{x}$ obtém-se $\mathbf{x}^{\mathsf{T}}S\mathbf{x} = \mathbf{x}^{\mathsf{T}}\lambda\mathbf{x} = \lambda\mathbf{x}^{\mathsf{T}}\mathbf{x}$. Agora, se \mathbf{x} é um vetor não-nulo (i.e., pelo menos uma das suas componentes é diferente de zero) tem-se

$$\mathbf{x}^\mathsf{T}\mathbf{x} = (x_1, \dots x_n) \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n x_i^2 > 0,$$

e, portanto, atendendo a que, pela alínea anterior, sabemos que $\mathbf{x}^\mathsf{T} S \mathbf{x} \geqslant 0$. Concluimos que $\lambda = \frac{\mathbf{x}^\mathsf{T} S \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \geqslant 0$, o que prova o pretendido.