Nome:	
B.I./C.C.: N^{o} de Estudante:	
Licenciatura:	Turma:
Unidade Curricular: Álgebra Linear I	Código: 21002
Data:	Ano Letivo: 2012/2013
Docente: Rafael Sasportes Classificação	:

Para a resolução do e-Fólio A, aconselha-se que:

- Preencha devidamente o cabeçalho do exemplar.
- O e-Fólio é composto por 6 grupos de questões, num total de 3 páginas e termina com a palavra FIM. As *suas respostas* às questões deste e-Fólio não podem ultrapassar **nove** páginas A4; páginas adicionais não serão classificadas.
- Escreva sempre com letra legível ou usando um processador de texto matemático conveniente.
- Depois de ter realizado o e-Fólio produza um único documento digital (em formato pdf), incluindo obrigatoriamente esta folha de rosto e a página com as questões de escolha múltipla, e insira-o, na página moodle da unidade curricular, em "e-Fólio A" até ao dia 3 de dezembro.

CRITÉRIOS DE AVALIAÇÃO E COTAÇÃO:

- A cotação total deste e-Fólio é de 4 valores.
- Exceto nas questões de escolha múltipla, justifique *cuidadosa e detalhadamente* todos os cálculos, raciocínios e afirmações que efetuar. Não será atribuída qualquer cotação a uma resposta não justificada.
- Cada questão do Grupo I (escolha múltipla) tem a cotação de 0.25 valores. Por cada resposta errada serão descontados 0.25 valores. É considerada errada uma questão com mais do que uma resposta. A classificação mínima do Grupo I é de 0 valores. Os Grupos II a VI têm cotação de 0.6 valores cada.

e-Fólio A

I. Questões de escolha múltipla.

Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando \times no quadrado respetivo.

1. Considere as seguintes matrizes:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \qquad e \qquad C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

Então:

 \Box c) AB = BA.

 \Box **b)** $CA = A^2$.

2. Considere a matriz ampliada

$$\begin{bmatrix} -2 & 3 & -1 & 0 & 3 \\ -5 & 4 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

O sistema de equações que corresponde a esta matriz é:

- $\Box \mathbf{c} \begin{cases}
 -2x + 3y z = 3 \\
 -5x + 4y = 1 \\
 x = 0
 \end{cases}$ $\Box \mathbf{d} \begin{cases}
 -2x + 3y z = 3 \\
 5x = 4y \\
 x = 0
 \end{cases}$
- **3.** Duas matrizes A e B pertencentes a $\mathcal{M}_{n\times n}(\mathbb{R})$ dizem-se semelhantes se existe uma matriz invertível $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $B = P^{-1}AP$.

Se A e B são matrizes semelhantes, então:

 \Box a) $A^2 = B^2$

 \Box c) $A - B = I_n$

b) $\det(A^2) = \det(B^2)$

 \Box d) det $A = -\det B$

- **4.** Seja $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Então:
 - \Box a) tr A=3

 \bigcirc c) det $(-A) = -\det A$

b) $3 + \text{tr } A = \det A$

 \Box d) det $(A^3) = 3 \det A$

(Nota: O traço de uma matriz é a soma dos elementos da diagonal principal, neste caso tr $A = \sum_{i=1}^{3} a_{ii} = a_{11} + a_{22} + a_{33}$)

Nos grupos seguintes justifique todas as suas respostas apresentando os raciocínios e os cálculos que efetuou para as obter.

II. Aplicando o Método de Eliminação de Gauss, determine se a matriz

$$Q = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

é invertível, e no caso afirmativo, calcule Q^{-1} usando o Método de Eliminação de Gauss-Jordan aplicado à matriz $[Q|I_4]$.

III. Utilizando o Teorema de Laplace calcule o valor de

$$\det \begin{bmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

- IV. Uma matriz quadrada diz-se uma matriz de permutação se cada coluna e cada linha tiverem uma entrada igual a 1 e as restantes iguais a 0.
 - a) Dê um exemplo de uma matriz de permutação A, 3×3 , que seja diferente de I_3 .
 - b) Verifique que dada uma matriz qualquer $B,\ 3\times 3,\ a$ matriz AB procede a uma permutação das linhas de B e a matriz BA resulta de B por uma permutação das suas colunas.
 - c) Verifique que a matriz A é invertível, tendo por inversa a sua transposta.
- V. Se $P \in \mathcal{M}_{n \times 1}(\mathbb{R})$ verifica $P^{\top}P = [1]$, designa-se a matriz $H = I_n 2PP^{\top}$ por matriz de Householder associada a P.
 - a) (i.) Seja $P^{\top} = \begin{bmatrix} 1/6 & 3/4 & 5/12 & 1/4 & 5/12 \end{bmatrix}$. Calcule a matriz de Householder H, associada a P.
 - (ii.) Verifique que H é uma matriz simétrica, e que $H^{\top}H = I_5$.
 - b) Mostre que se H é uma matriz de Householder então H é uma matriz simétrica e $H^{\top}H = I_n$.
- **VI.** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que

$$x^{\top}Ax = 0 \ \forall x \in \mathcal{M}_{n \times 1}(\mathbb{R}) \iff A^{\top} = -A.$$

FIM