

E-Fólio B de Sistemas em Rede

Efólio-B – 20/01/2014 David Pintassilgo, aluno nº 1100896

Questão 1:

Há dois tipos de protocolos de roteamento, os mais recentes chamados de 'estado de link' e os da primeira geração que são os de roteamento com vector de distancia. No caso dos protocolos mais antigos usam um algoritmo chamado Bellman-Ford desenvolvido graças aos investigadores Bellman em 1957, Ford e Fulkerson em 1962.

Este algoritmo foi usado inicialmente usado na ARPANET, e depois na internet com o nome de RIP (Routing Information Protocol), o algoritmo informa o roteador do caminho mais curto entre dois pontos da rede a nível da quantidade de pontos intermédios, ou saltos entre os pontos. Quanto menor o número de saltos, mais eficiente o roteamento.

Devido a uma serie de desvantagens (por exemplo, o RIP não é funcional com um número de pontos intermédios superior a 16) o RIP foi sendo descontinuado, aparecendo ainda em redes de dimensão mais reduzida.

O algoritmo em questão funciona da seguinte forma:

- -Cada roteador sabe antecipadamente a distancia aos roteadores a quem estão ligados diretamente.
- -Cada roteador envia o seu vector aos roteadores adjacentes e reciprocamente recebe também dos outros, tudo isto em intrevalos regulares.
- -Com todos os dados, o roteador analiza e calcula qual o melhor caminho para enviar os pacotes, tendo em conta a soma das distancias construindo assim um novo vector que vai ser enviado ao outros na próxima actualização.

Para o caso apresentado vamos somar a distancia medida pelo roteador C aos roteadores adjacentes com as distancias que os adjacentes informaram sobre os restantes roteadores.

Retardo medido em C:	
Para B	6
Para D	3
Para E	5

(5,0,8,12,6,2)		
Distancia de C a B = 6		
De B para A	5	Final= 6+5=11
De B para B	0	Final= 6+0=6
De B para C		Sem importancia
De B para D	12	Final= 6+12=18
De B para E	6	Final= 6+6=12
De B para F	2	Final= 6+2=8

(16,12,6,0,9,10)			
Distancia de C a D = 3			
De D para A	16	Final= 3+16=19	
De D para B	12	Final= 3+12=15	
De D para C	6	Sem importancia	
De D para D	0	Final= 3+0=3	
De D para E	9	Final= 3+9=12	
De D para F	10	Final= 3+10=13	

(7,6,3,9,0,4)			
Distancia de C a E = 5			
De E para A	7	Final= 5+7=12	
De E para B	6	Final= 5+6=11	
De E para C	3	Sem importancia	
De E para D	9	Final= 5+9=14	
De E para E	0	Final= 5+0=5	
De E para F	4	Final= 5+4=9	

Nova Tabela com a melhor saida a usar:

Menor caminho		
De C até:		
A 11		
B 6		
-		
D 3		
E 5		
F 8		

Roteador:	Saida:	Distancia
Α	В	11
В	В	6
С	o próprio	0
D	D	3
E	Е	5
F	В	8

Vector a ser enviado será: (11,6,0,3,5,8)

Questão 2:

Se a rede contem 50 roteadores o vector que vai ser trocado entre eles terá de conter 50 valores de retardo. Uma vez que os valores são palavras de 8 bit's, vamos ter 50*8 bits = 400bit's (ignorando os bits necessários para o pacote completo, como cabeçalho, bits de controlo, etc..).

Cada roteador vai enviar um vector e receber outro de 2 em 2 segundos, ficamos assim com 800 bit's a cada 2 segundos. Temos temos então 400 bps. Uma vez que a linha é full-duplex cada roteador pode enviar e receber o vector ao mesmo tempo.