

U.C. 21037

Elementos de Probabilidade e Estatística

21 de Junho de 2011

-- INSTRUÇÕES --

- O estudante deverá responder à prova na folha de ponto, preencher o cabeçalho e todos os espaços reservados à sua identificação, com letra legível.
- Não utilize o enunciado da prova para resposta, podendo ficar na posse do mesmo.
- Verifique no momento da entrega da(s) folha(s) de ponto se todas as páginas estão rubricadas pelo vigilante. Caso necessite de mais do que uma folha de ponto, deverá numerá-las no canto superior direito.
- Em hipótese alguma serão aceites folhas de ponto dobradas ou danificadas.
- Exclui-se, para efeitos de classificação, toda e qualquer resposta apresentada em folhas de rascunho.
- Os telemóveis deverão ser desligados durante toda a prova e os objectos pessoais deixados em local próprio da sala de exame.
- A prova é constituída por **5** páginas e termina com a palavra **FIM**. Verifique o seu exemplar e, caso encontre alguma anomalia, dirija-se ao professor vigilante nos primeiros 15 minutos da mesma, pois qualquer reclamação sobre defeito(s) de formatação e/ou de impressão que dificultem a leitura não será aceite depois deste período.
- Utilize unicamente tinta azul ou preta.
- Para perguntas: <u>com espaços para preenchimento</u>, deve passar a pergunta para a folha de ponto e indicar aí a respectiva resposta na folha de ponto.
- É permitida a utilização de máquina de calcular. Não é permitida a consulta de materiais de estudo pessoais.
- Em Anexo encontram-se algumas fórmulas para consulta, bem como uma tabela estatística.
- Justifique todas as afirmações e cálculos que realizar, e verifique sempre se os conteúdos da resposta se adequam ao solicitado pela questão.
- Se precisar de um resultado de uma alínea anterior para resolver outra alínea, as suposições que necessite fazer (caso façam sentido), serão levadas em linha de conta aquando da correcção.
- A cotação global do exame é de 20 valores, tendo a seguinte distribuição:

I.	II.	III.	IV.	V.	
4,0 val.	3,5 val.	4,5 val.	3,5 val.	4,5 val.	

Duração da prova: 2 horas mais 30 minutos de tolerância.

I. Considere a precipitação (em mm) caída no Porto nos anos 1997 a 2007:

Anos	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Precipitação	162,5	149,1	101,7	46,8	403,4	157,5	332,2	126,8	9,6	62,3	53,3

Com base nos dados apresentados, responda às alíneas:

- a) (2.0 v) Qual a média, a variância e o coeficiente de variação da precipitação no Porto nos anos em análise? Comente a dispersão que calculou em termos da sua magnitude.
- **b) (2.0 v)** Construa o gráfico de dispersão. Interprete-o e diga o que pode concluir quanto à correlação entre a precipitação e o tempo.

(utilize até 1 página e meia para resolver esta questão)

- II. Uma peça é manufacturada por 3 fábricas: 1, 2 e 3. Sabe-se que a fábrica 2 produz 2,5 vezes a produção de cada uma das fábricas 1 e 3. Além disso, 3% das peças produzidas pelas fábricas 1 e 3 são defeituosas, enquanto 4 % das produzidas pela fábrica 2 são defeituosas. Todas as peças produzidas são colocadas no mesmo armazém. Tira-se uma peça ao acaso da produção global. Qual a probabilidade:
 - a) (1.0 v) De ter sido produzida na fábrica 2?
 - b) (1.0 v) Da peça ser defeituosa? (Caso não tenha resolvido a alínea a) considere que é equiprovável a probabilidade da peça ser produzida em qualquer uma das fábricas)
 - c) (1.5 v) De ter sido produzida na fábrica 1, sabendo que a peça retirada é defeituosa? (caso não tenha resolvido a alínea anterior considere igual o valor 0,03 para a probabilidade solicitada)

(utilize até cerca de 1 página e meia para resolver esta questão)

- **III.** Considere uma experiência aleatória que consiste no lançamento de dois dados perfeitos (não viciados) distintos e observa-se o número de pintas na face voltada para cima. Definindo a variável aleatória X como o produto dos resultados obtidos nas duas faces, determine:
 - a) (1.0 v) O espaço de resultados da experiência aleatória do lançamento dos dados.
 - **b)** (1.0 v) Os valores possíveis para X e a sua função de probabilidade.
 - c) (1.0 v) A função distribuição da variável aleatória X.
 - d) (1.5 v) O valor médio e a variância da v. a. X.

(utilize até cerca de 2 páginas para resolver esta questão)

- **IV.** Uma empresa dispõe de uma caixa multibanco para utilização dos seus funcionários, depois de muitas observações concluiu-se que o número de utilizações da caixa multibanco segue um processo de Poisson. Em média, por hora, 8 pessoas utilizam os serviços da caixa multibanco. Calcule a probabilidade de:
 - a) (1.0 v) Numa hora escolhida aleatoriamente, não ter havido mais do que uma pessoa a utilizar a máquina.
 - b) (1.0 v) Numa hora, escolhida aleatoriamente, a máquina ter sido utilizada no mínimo por 7 pessoas.
 - a) (1.5 v) Num intervalo de 10 minutos, escolhidos aleatoriamente, nenhuma pessoa ter utilizado a máquina.

(utilize até 1 página para resolver esta questão)

- **V.** Os resultados numa prova de corrida de determinada modalidade são normalmente distribuídos com uma média de 35 segundos e um desvio padrão de 6 segundos. Qual a probabilidade de numa prova seleccionada aleatoriamente obter resultados:
 - a) (1.0 v) Superiores a 32s? (faça o esboço gráfico marcando a área correspondente)
 - **b)** (1.0 v) Inferiores a 36s? (faça o esboço gráfico)
 - c) (1.5 v) Entre os 30s e os 37s? (faça o esboço gráfico)
 - **d) (1.0 v)** De no final da primeira volta, correspondente a quinze provas de corrida, a média dos resultados ser inferior a 34 s?

(utilize até 1 página e meia para resolver esta questão)

ANEXO A

Modelos	Expressão das funções de Probabilidade	μ	σ^2
Bernoulli	$P(X = x) = p^{x} (1-p)^{1-x}$ $x = 0,1$	p	<i>p</i> (1- <i>p</i>)
Binomial	$P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}$ $x = 0,1,n$	пр	np(1-p)
Poisson	$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \qquad x = 0, 1, \dots$	λ	λ
Uniforme	$P(X = x) = \frac{1}{n}$ $x = 0,1,$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Geométrica	$P(X = x) = p(1-p)^{x-1}; x=1,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hipergeométrica	$P(X = x) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$	$n\frac{M}{N}$	$n\frac{M}{N}.\frac{N-M}{N}.\frac{N-n}{N-1}$

	Expressão das	μ	σ^2	
Modelos	Densidade	Distribuição		
Exponencia I	$f(x) = \lambda \exp(-\lambda x) x > 0$	$F(x) = 1 - exp(-\lambda x) x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Uniforme	$f(x) = \frac{1}{b-a} x \in [a,b]$	$F(x) = \frac{x - a}{b - a} x \in [a, b[$	$\frac{a+b}{2}$	$\frac{\left(b-a\right)^2}{12}$
Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$		μ	σ^2

Anexo A - Valores da Função Distribuição Normal Reduzida

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^{2}/2} du = P(Z \le z)$$

Z	0	1	2	3	4	5	6	7	8	9
-2,0	0,023	0,022	0,022	0,021	0,021	0,020	0,020	0,019	0,019	0,018
-1,9	0,029	0,028	0,027	0,027	0,026	0,026	0,025	0,024	0,024	0,023
-1,8	0,036	0,035	0,034	0,034	0,033	0,032	0,031	0,031	0,030	0,029
-1,7	0,045	0,044	0,043	0,042	0,041	0,040	0,039	0,038	0,038	0,037
-1,6	0,055	0,054	0,053	0,052	0,051	0,049	0,048	0,047	0,046	0,046
-1,5	0,067	0,066	0,064	0,063	0,062	0,061	0,059	0,058	0,057	0,056
-1,4	0,081	0,079	0,078	0,076	0,075	0,074	0,072	0,071	0,069	0,068
-1,3	0,097	0,095	0,093	0,092	0,090	0,089	0,087	0,085	0,084	0,082
-1,2	0,115	0,113	0,111	0,109	0,107	0,106	0,104	0,102	0,100	0,099
-1,1	0,136	0,134	0,131	0,129	0,127	0,125	0,123	0,121	0,119	0,117
-1,0	0,159	0,156	0,154	0,152	0,149	0,147	0,145	0,142	0,140	0,138
-0,9	0,184	0,181	0,179	0,176	0,174	0,171	0,169	0,166	0,164	0,161
-0,8	0,212	0,209	0,206	0,203	0,200	0,198	0,195	0,192	0,189	0,187
-0,7	0,242	0,239	0,236	0,233	0,230	0,227	0,224	0,221	0,218	0,215
-0,6	0,274	0,271	0,268	0,264	0,261	0,258	0,255	0,251	0,248	0,245
-0,5	0,309	0,305	0,302	0,298	0,295	0,291	0,288	0,284	0,281	0,278
-0,4	0,345	0,341	0,337	0,334	0,330	0,326	0,323	0,319	0,316	0,312
-0,3	0,382	0,378	0,374	0,371	0,367	0,363	0,359	0,356	0,352	0,348
-0,2	0,421	0,417	0,413	0,409	0,405	0,401	0,397	0,394	0,390	0,386
-0,1	0,460	0,456	0,452	0,448	0,444	0,440	0,436	0,433	0,429	0,425
-0,0	0,500	0,496	0,492	0,488	0,484	0,480	0,476	0,472	0,468	0,464
0,0	0,500	0,504	0,508	0,512	0,516	0,520	0,524	0,528	0,532	0,536
0,1	0,540	0,544	0,548	0,552	0,556	0,560	0,564	0,567	0,571	0,575
0,2	0,579	0,583	0,587	0,591	0,595	0,599	0,603	0,606	0,610	0,614
0,3	0,618	0,622	0,626	0,629	0,633	0,637	0,641	0,644	0,648	0,652
0,4	0,655	0,659	0,663	0,666	0,670	0,674	0,677	0,681	0,684	0,688
0,5	0,691	0,695	0,698	0,702	0,705	0,709	0,712	0,716	0,719	0,722
0,6	0,726	0,729	0,732	0,736	0,739	0,742	0,745	0,749	0,752	0,755
0,7	0,758	0,761	0,764	0,767	0,770	0,773	0,776	0,779	0,782	0,785
0,8	0,788	0,791	0,794	0,797	0,800	0,802	0,805	0,808	0,811	0,813
0,9	0,816	0,819	0,821	0,824	0,826	0,829	0,831	0,834	0,836	0,839
1,0	0,841	0,844	0,846	0,848	0,851	0,853	0,855	0,858	0,860	0,862
1,1	0,864	0,867	0,869	0,871	0,873	0,875	0,877	0,879	0,881	0,883
1,2	0,885	0,887	0,889	0,891	0,893	0,894	0,896	0,898	0,900	0,901
1,3	0,903	0,905	0,907	0,908	0,910	0,911	0,913	0,915	0,916	0,918
1,4	0,919	0,921	0,922	0,924	0,925	0,926	0,928	0,929	0,931	0,932
1,5	0,933	0,934	0,936	0,937	0,938	0,939	0,941	0,942	0,943	0,944
1,6	0,945	0,946	0,947	0,948	0,950	0,951	0,952	0,953	0,954	0,954
1,7	0,955	0,956	0,957	0,958	0,959	0,960	0,961	0,962	0,962	0,963
1,8	0,964	0,965	0,966	0,966	0,967	0,968	0,969	0,969	0,970	0,971
1,9	0,971	0,972	0,973	0,973	0,974	0,974	0,975	0,976	0,976	0,977
2,0	0,977	0,978	0,978	0,979	0,979	0,980	0,980	0,981	0,981	0,982

FIM