

p-Fólio

U.C. 21002 Álgebra Linear I

31 de janeiro de 2017

- O p-fólio é composto por 4 grupos de questões e respetivas alíneas, contém 5 páginas e termina com a palavra FIM.
- Verifique o seu exemplar e, caso encontre alguma anomalia, dirija-se ao professor vigilante nos primeiros 15 minutos da prova, pois qualquer reclamação sobre defeito(s) de formatação e/ou de impressão que dificultem a leitura não será aceite depois deste período.
- As questões do grupo I (escolha múltipla) deverão ser respondidas no enunciado.
 As questões dos grupos II, III e IV deverão ser respondidas no Caderno de Prova.
 Todos os cabeçalhos e espaços reservados à identificação, deverão ser preenchidos com letra legível. Utilize unicamente tinta azul ou preta.
- Verifique no momento da entrega da(s) folha(s) de ponto se todas as páginas estão rubricadas pelo vigilante. Caso necessite de mais do que uma folha de ponto, deverá numerá-las no canto superior direito.
- Não serão aceites folhas de ponto dobradas ou danificadas. Exclui-se, para efeitos de classificação, toda e qualquer resposta apresentada em folhas de rascunho.
- Não é permitido o uso de máquina de calcular, nem de quaisquer elementos de consulta.
- Tenha em atenção que o p-fólio tem a duração máxima de 1 hora e 30 minutos.

Critérios de avaliação e cotação

- Com exceção das questões do grupo I (escolha múltipla), é necessário justificar todas as respostas e apresentar os cálculos efectuados. A apresentação de valores numéricos, como resposta, sem qualquer justificação, mesmo que corretos, terão a cotação zero.
- Cada questão do grupo I (escolha múltipla) tem a cotação de 1 valor. Por cada resposta errada serão descontados ¹/₃ valores. É considerada errada uma questão com mais de uma resposta. A classificação global mínima do grupo I é de 0 valores. A cotação das restantes questões é a seguinte:

II	III	IV
1.5 val.	3.5 val.	4 val.

Nº de Est	udante:	B. I./C.C. n°		
Turma Assinatura do Vigilante:				
I. Questõe	s de escolha múltipla.			
verda algum	deira. Indique-a marcando \times no o	apenas uma das afirmações a), b), c), d) é quadrado respectivo. Caso pretenda anular to a essa resposta e indique, se for caso disso,		
	Que	estão 1		
	$A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz que sidade de ordem n . Então:	satisfaz $A^2 - I_n = 0$, onde I_n designa a ma		
	a) $A = I_n$.	\Box c) $A^{-1} = A$.		
	b) $\det A = 0$.			
	$\mathrm{Qu}\epsilon$	estão 2		
Sejan	n F e G subespaços de \mathbb{R}^3 tais q	que		
	$F = \langle (1,0,1), (1,2,1) \rangle \in$	e $G = \langle (0,0,1), (1,1,1), (1,2,3) \rangle$.		
Então	0:			
	a) $\dim(F + G) = 3$.	\Box c) dim $(F+G)=4$.		
	b) $\dim(F \cap G) = 0$.	\Box d) dim $F = 1$.		
	Que	estão 3		
Seja . Então		um valor próprio λ e vetor próprio associado		
	a) $\det A = \lambda$.			
	b) u não é vetor próprio de A	1^3 .		
	c) u é vetor próprio de $3A$.			
	d) u não é vetor próprio de A	$A+3I_3$.		
Solu	ções:			
estão 1: c)				
stão 2: a)				

Questão 3: c)

Nome:			
N° de Estudante:		B. I./C.C. nº	
Turma	Assinatura do Vig	gilante:	

Responda aos grupos seguintes no Caderno de Prova

Nos grupos seguintes justifique todas as afirmações apresentando os raciocínios e os cálculos que efetuou para as obter.

II. Diga se é verdadeira ou falsa a afirmação seguinte, justificando cuidadosamente a sua resposta através de uma demonstração ou de um contra-exemplo, consoante o que for apropriado.

Se 1 é valor próprio de $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ então $\det(A - I_n) = 0$.

Soluções:

A proposição é verdadeira, tendo-se mesmo uma equivalência (proposição 6.14 pág. 374, 3ª edição).

III. Para α real considere a matriz

$$A_{\alpha} = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 2 & 2 & 0 \\ -1 & 0 & -2 - \alpha & 2 + \alpha \\ -1 & -3 & -2 + \alpha & -1 \end{bmatrix}.$$

a) Para cada α real determine a característica e a nulidade¹ da matriz A_{α} .

Soluções:

Fazendo operações sucessivas sobre as linhas da matriz A_{α} tem-se:

$$\begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 2 & 2 & 0 \\ -1 & 0 & -2 - \alpha & 2 + \alpha \\ -1 & -3 & -2 + \alpha & -1 \end{bmatrix} \xrightarrow{\ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ \ell_4 + \ell_1 & \ell_4 + \ell_1 & \ell_4 + \ell_1 \end{bmatrix} \xrightarrow{\ell_3 - \ell_2} \begin{bmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & -\alpha & 1 + \alpha \\ 0 & -2 & \alpha & -2 \end{bmatrix} \xrightarrow{\ell_3 - \ell_2} \begin{bmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -\alpha & \alpha \\ 0 & 0 & \alpha & 0 \end{bmatrix}$$

Se $\alpha=0$ a característica é igual a 2 e se $\alpha\neq0$ a característica é igual a 4.

Como pela proposição 4.69 (pág. 268, 3ª edição) dim $\mathcal{N}(A_{\alpha}) = 4 - r(A_{\alpha})$ temos que dim $\mathcal{N}(A_0) = 4 - 2 = 2$ e no caso em que $\alpha \neq 0$ a dimensão do núcleo é zero.

b) Determine bases para $\mathcal{N}(A_{\alpha})$ e para $\mathcal{C}(A_{\alpha})$ (o núcleo e o espaço das colunas de A_{α}).

¹A nulidade de A_{α} é a dimensão do seu núcleo $\mathcal{N}(A_{\alpha})$.

Soluções:

Se $\alpha = 0$ o núcleo é constituído pelas soluções do sistema

$$x + y + 2z - w = 0$$
$$y + w = 0.$$

A sequência ((-2,1,0,-1);(-2,0,1,0)) é uma base para o núcleo no caso $\alpha=0$.

Uma vez que no caso $\alpha=0$ a matriz tem característica 2, o espaço das colunas tem dimensão 2 e podemos escolher para base do espaço das colunas de A_0 , 2 colunas linearmente independentes, por exemplo as 2 primeiras. A sequência ((1,1,-1,-1);(1,2,0,-3)) é uma base para o espaço das colunas no caso $\alpha=0$.

Se $\alpha \neq 0$ o núcleo é constituído apenas pelo vetor nulo. O espaço das colunas tem dimensão 4 e portanto coincide com \mathbb{R}^4 , e quaisquer 4 vetores linearmente independentes formam uma base. A base canónica de \mathbb{R}^4 é uma base do espaço das colunas.

c) Calcule o determinante de A_{α} e determine os valores de α para os quais a matriz A_{α} é invertível.

Soluções:

A última matriz que obtivemos na alínea a) é triangular e tem determinante igual a α^2 e portanto, como efetuámos uma troca de linhas, o determinante de A_{α} é igual a $-\alpha^2$, e concluimos que A_{α} é invertível para $\alpha \neq 0$.

d) Calcule a matriz inversa de A_{α} sempre que possível.

Soluções:

Para $\alpha \neq 0$ podemos calcular a inversa de A_{α} usando condensação, ou seja

$$[A_{\alpha}|I_4] \xrightarrow{\text{(linhas)}} [I_4|A_{\alpha}^{-1}].$$

Em alternativa como já calculámos o determinante de A_{α} podemos usar o método da adjunta

$$A_{\alpha}^{-1} = \frac{1}{\det A_{\alpha}} \operatorname{adj} A_{\alpha} = \frac{-1}{\alpha^2} \operatorname{adj} A_{\alpha},$$

onde adj A_{α} é a matriz transposta da matriz dos complementos algébricos. Para calcular a matriz dos complementos algébricos temos de calcular 16 determinantes 3×3 , obtendo-se

$$\operatorname{adj} A_{\alpha} = \begin{bmatrix} -2\alpha^2 - 4\alpha & \alpha^2 + \alpha & \alpha & -\alpha \\ \alpha^2 + 2\alpha & -\alpha^2 + \alpha & -2\alpha & -\alpha \\ -2\alpha & \alpha & 0 & -\alpha \\ 0 & \alpha & -\alpha & -\alpha \end{bmatrix}^{\mathsf{T}},$$

e portanto

$$A_{\alpha}^{-1} = \frac{-1}{\alpha^2} \operatorname{adj} A_{\alpha} = \frac{-1}{\alpha^2} \begin{bmatrix} -2\alpha^2 - 4\alpha & \alpha^2 + 2\alpha & -2\alpha & 0\\ \alpha^2 + \alpha & -\alpha^2 + \alpha & \alpha & \alpha\\ \alpha & -2\alpha & 0 & -\alpha\\ -\alpha & -\alpha & -\alpha & -\alpha \end{bmatrix}$$
$$= \begin{bmatrix} 2 + 4/\alpha & -1 - 2/\alpha & 2/\alpha & 0\\ -1 - 1/\alpha & 1 - 1/\alpha & -1/\alpha & -1/\alpha\\ -1/\alpha & 2/\alpha & 0 & 1/\alpha\\ 1/\alpha & 1/\alpha & 1/\alpha & 1/\alpha \end{bmatrix}.$$

- IV. Considere a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^3$ definida por S(x,y,z) = (x,x-y+z,y-z).
 - a) Determine a matriz A que representa S em relação à base canónica de \mathbb{R}^3 .

Soluções:

Calculando a imagem dos vetores da base canónica de \mathbb{R}^3 tem-se

$$S(1,0,0) = (1,1,0), \quad S(0,1,0) = (0,-1,1) \in S(0,0,1) = (0,1-1),$$

e portanto a matriz A que representa S em relação à base canónica de \mathbb{R}^3 é a matriz que tem por colunas estes vetores:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

b) Calcule os valores próprios de A.

Soluções: Os valores próprios de A são as soluções da equação

$$\det(A - \lambda I_3) = 0,$$

ou seja

$$\det \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 1 & -1 - \lambda & 1 \\ 0 & 1 & -1 - \lambda \end{bmatrix} = 0 \iff (1 - \lambda)((-1 - \lambda)^2 - 1) = 0,$$

aplicando a regra de Laplace à primeira linha do determinante.

Tem-se

$$(1-\lambda)((-1-\lambda)^2-1) = (1-\lambda)(-1-\lambda-1)(-1-\lambda+1) = (1-\lambda)(-2-\lambda)(-\lambda) = -\lambda(\lambda-1)(\lambda+2),$$

logo os valores próprios são $\{-2,0,1\}$.

c) Determine os subespaços próprios de A.

Soluções:

Os subespaços próprios de A são os subespaços gerados pelos vetores próprios associados aos valores próprios $\{0, 1, -2\}$.

O espaço próprio associado ao valor próprio 0 é gerado pelas soluções de

$$(A - 0 \cdot I_3)X = 0 \iff \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} X = 0,$$

onde X é o vetor coluna $(x, y, z)^{\top}$. Resolvendo o sistema obtemos x = 0, y = z, e portanto uma base pode ser o vetor (0, 1, 1).

O espaço próprio associado ao valor próprio 1 é gerado pelas soluções de

$$(A - I_3)X = 0 \iff \begin{bmatrix} 1 - 1 & 0 & 0 \\ 1 & -1 - 1 & 1 \\ 0 & 1 & -1 - 1 \end{bmatrix} X = 0 \iff \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} X = 0.$$

Resolvendo o sistema obtemos x - 2y + z = 0, y - 2z = 0, ou ainda x = 3z, y = 2z e portanto uma base pode ser o vetor (3, 2, 1).

O espaço próprio associado ao valor próprio -2 é gerado pelas soluções de

$$(A+2I_3)X = 0 \iff \begin{bmatrix} 1+2 & 0 & 0 \\ 1 & -1+2 & 1 \\ 0 & 1 & -1+2 \end{bmatrix} X = 0 \iff \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} X = 0.$$

Resolvendo o sistema obtemos x = 0, y = -z, e portanto uma base pode ser o vetor (0, 1, -1).

d) Determine se é possível escrever A na forma $A = PDP^{-1}$, onde $P \in \mathcal{M}_{3\times 3}(\mathbb{R})$ é uma matriz invertível e $D \in \mathcal{M}_{3\times 3}(\mathbb{R})$ é uma matriz diagonal. Em caso afirmativo determine matrizes P e D nessas condições.

Soluções:

Uma vez que temos uma matriz 3×3 com 3 valores próprios distintos a matriz A é diagonalizável, ou seja $A = PDP^{-1}$ onde $P \in \mathcal{M}_{3\times 3}(\mathbb{R})$ é a matriz cujas colunas são os vetores próprios obtidos anteriormente e $D \in \mathcal{M}_{3\times 3}(\mathbb{R})$ é a matriz diagonal formada pelos valores próprios escritos na mesma ordem em P e em D. A matriz P é invertível pois vetores próprios associados a valores próprios distintos são linearmente independentes.

Assim, $A = PDP^{-1}$, onde

$$P = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & -1 \end{bmatrix} \text{ e } A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

FIM