ARQUITECTURA DE COMPUTADORES | 21010

Data e hora de realização

27 de janeiro de 2021, às 10h de Portugal Continental

Duração da prova

90m + 60m

Instruções

- O estudante deverá responder à prova na folha de resolução.
- A cotação é indicada junto de cada pergunta.
- A prova é individual, mas pode ser realizada com consulta. Todos os elementos consultados devem ser referenciados na prova.
- A interpretação dos enunciados das perguntas também faz parte da sua resolução, pelo que, se existir alguma ambiguidade, deve indicar claramente como foi resolvida.
- A prova é constituída por 5 páginas (4 Grupos) e termina com a palavra FIM. Verifique o seu exemplar e, caso encontre alguma anomalia, dirija-se ao professor vigilante nos primeiros 15 minutos da mesma, pois qualquer reclamação sobre defeito(s) de formatação e/ou de impressão que dificultem a leitura não será aceite depois deste período.

- A cotação total de cada Grupo é de 5 valores, sendo a cotação de cada uma das questões indicada junto do enunciado da mesma, entre [].
- As suas respostas devem ser claras, indicando todos os passos seguidos na resolução de cada questão. Resultados apresentados sem justificação poderão incorrer num desconto de ½ da cotação total da questão.
- Atenção: nesta prova considere os 3 dígitos menos significativos do seu número de estudante. Exemplo: no número de estudante 2012345, os três dígitos menos significativos são o número 345. No enunciado é utilizado d2 para referir o terceiro dígito menos significativo (aqui 3), ao d1 o segundo dígito menos significativo (aqui 4) e ao do o dígito menos significativo (aqui 5). Existem também questões que utilizam valores binários com base na paridade destes dígitos. Neste caso as variáveis utilizadas são b2 a bo, ficando com 1 para os dígitos par e com 0 para os dígitos ímpar. No caso deste exemplo, apenas d1 é par, pelo que b2 e bo são 0, e b1 é 1. Deve preencher na folha de resolução a seguinte tabela, aqui preenchida com o exemplo.

Número: (exemplo: 2012**345**)

Dígito	Valor	Binário	Valor
d ₂	(exemplo: 3)	b ₂	(exemplo: 0)
d ₁	(exemplo: 4)	b ₁	(exemplo: 1)
do	(exemplo: 5)	bo	(exemplo: 0)

Enunciado

Grupo I (3 valores)

1. [1.5]Considere uma função lógica F(A,B,C,D), em que A é a variável de maior peso e D a variável de menor peso. A distribuição de mintermos (m) e indiferenças (md) da função F(A,B,C,D) é a seguinte:

$$\sum m(\mathbf{d_2}, 1, 4, 13, 14) + \sum md(\mathbf{d_0}, \mathbf{d_1}, 6, 9, 10)$$

Construa o mapa de Karnaugh e simplifique a função de modo a obter uma soma de produtos.

NOTA: d_2 , d_1 e d_0 são extraídos do seu número de estudante, de acordo com as instruções do enunciado. No caso do mesmo número ficar como mintermo e indiferença, considere que o número está apenas nos mintermos. No caso do número de exemplo os mintermos ficam 3, 1, 4, 13, 14 e as indiferenças 5, 4, 6, 9, 10, e como o 4 está em ambos, é retirado das indiferenças.

NOTA: Na sua resolução marque os laços utilizados no mapa, e faça corresponder cada termo da função resultante com o laço que lhe dá origem. Caso contrário a resposta não se considera justificada.

2. [0.5] Efectue a seguinte conversão entre bases numéricas:

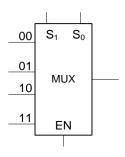
Represente o número d_2d_1 1h em base 8.

NOTA: no caso da alínea b, se alguns dos dígitos forem 8 ou 9, considere que têm o valor 1.

3. [1] Efectue as seguintes conversões:

Represente o número $-8d_2$ em binário com 8 bits, utilizando a técnica de complemento para 2.

Grupo II (3 valores)


Considere a seguinte função lógica de três variáveis F(A,B,C):

$$F(A,B,C) = \overline{A+B\cdot b_0} \cdot (A\cdot b_1 + B\overline{C}) + (AC\cdot \overline{b_0} + B\cdot \overline{b_2})\overline{A+C} + (A\overline{B}C + AB\overline{C} + AB\overline{C})$$

Formato alternativo linear:
$$/(A+Bb_0)(A b_1+B/C) + (AC/b_0+B/b_2)/(A+C) + (A/BC + AB/C + /ABC)$$

NOTA: No caso do número de exemplo, a expressão fica: /(A+B0)(A1+B/C) + (AC1+B1)/(A+C) + (A/BC + AB/C + /ABC)

- **1. [1.5]** Simplifique algebricamente a função F.
- **2. [1.5]** Implemente a função recorrendo a um multiplexer de 2 variáveis de selecção, em que a variável S_1 = A e S_0 =C.

Grupo III (3 valores)

Considere o Diagrama de Estados seguinte:

Um traço – representa ambas as hipóteses de uma variável, por exemplo 1- significa 10 e 11. Uma representação equivalente seria 10, 11. Pretende-se construir um circuito digital síncrono que implemente este diagrama, utilizando flip-flops tipo D.

- **1. [2]** Construa a tabela de transição de estados correspondente ao diagrama de estados.
- 2. [1] Simplifique as variáveis de estado.

Grupo IV (3 valores)

1. [3] Elabore um programa no assembly do P3. O programa recebe um valor em R1 com um endereço de memória, e em R2 com o número de posições a processar a partir do endereço em R1. O programa deve localizar a maior sequência de números que seja estritamente crescente (não pode haver dois números iguais), retornando em R3 o início da sequência, e em R4 o número de elementos. Exemplo: valores existentes no vetor 53, 15, 63, 125, 5 com R2=5. A maior sequência crescente é 15, 63, 125, a iniciar-se na segunda posição e com 3 elementos.

Anexo

Primeiras potências de 2:

1	2	4	8	16	32	64	128
256	512	1024	2048	4096	8192	16384	32768

Conjunto de Instruções do Processador P3:

Aritméticas	Lógicas	Deslocamento	Controlo de Fluxo	Transferência de Dados	Diversas
NEG	COM	SHR	BR	MOV	NOP
INC	AND	SHL	BR.cond	MVBH	ENI
DEC	OR	SHRA	JMP	MVBL	DSI
ADD	XOR	SHLA	JMP.cond	XCH	STC
ADDC	TEST	ROR	CALL	PUSH	CLC
SUB		ROL	CALL.cond	POP	CMC
SUBB		RORC	RET		
CMP		ROLC	RETN		
MUL			RTI		
DIV			INT		

Conjunto de Condições de Salto:

Condição	Mnemónica	
Zero	Z	
Não Zero	NZ	
Transporte (Carry)	С	
Não Transporte	NC	
Negativo	N	
Não Negativo	NN	
Excesso (Overflow)	0	
Não Excesso	NO	
Positivo	Р	
Não Positivo	NP	
Interrupção	I	
Não Interrupção	NI	