b b

‘ E'félio A I Folha de resolugéo para E-folio

N ABERTA

UNIDADE CURRICULAR: Sistemas Distribuidos
CcODIGO: 21108

DOCENTE: Nelson Russo

A preencher pelo estudante

NOME: Luis Carlos Crispim Pereira

N.° DE ESTUDANTE: 2300163

CURSQO: Licenciatura Engenharia de Informatica

DATA DE ENTREGA: 03/04/25

Pagina 1 de 6



TRABALHO / RESOLUGAO:

Questdo A2:
Como é que os modelos de arquiteturas distribuidas, por exemplo peer-to-peer e cliente servidor,
tém impacto na seguranga e a confiabilidade das aplicagdes distribuidas?

Resposta A2:
A arquitetura de um sistema distribuido influencia profundamente a forma como s&o geridas
falhas, ameacgas e o desempenho geral das aplicagbes. Os modelos cliente-servidor e peer-to-
peer (P2P) abordam estes desafios de maneiras distintas, afetando diretamente a seguranca e
a confiabilidade dos sistemas.
No modelo cliente-servidor, ha uma clara centralizagdo. Um ou mais servidores fornecem
servigos e dados, enquanto os clientes os consomem. Esta organizagao facilita a aplicagéo de
politicas de seguranca, como autenticacdo centralizada, controlo de acesso e registo de
atividades, pois a maior parte da logica esta concentrada num unico ponto (Coulouris et al.,
2011). No entanto, essa centralizagdo também introduz riscos significativos. A existéncia de um
ponto Unico de falha significa que, se o servidor for atacado ou tiver uma falha técnica, a aplicagao
pode tornar-se indisponivel para todos os utilizadores. Ataques como negagao de servigo (DDoS)
exploram precisamente essa vulnerabilidade.
Além disso, em sistemas altamente centralizados, a escalabilidade horizontal pode tornar-se
complexa e a confianga do utilizador depende fortemente da robustez da infraestrutura.
Exemplos praticos incluem plataformas de jogos online e lojas digitais, como Steam ou League
of Legends. Nestes casos, o modelo facilita a gestdo da seguranga, mas exige elevada
disponibilidade e manutengéo dos servidores para garantir fiabilidade.
Por oposicdo, a arquitetura peer-to-peer distribui fungdes por todos os nés da rede. Cada né
pode agir como cliente e servidor, o que reduz a dependéncia de qualquer entidade central. Esta
descentralizagdo melhora a tolerancia a falhas, ja que o sistema continua funcional mesmo que
alguns nds se tornem inativos (Coulouris et al., 2011). Contudo, também dificulta a aplicagéo de
politicas de seguranga consistentes, como autenticagdo e verificagdo de integridade. Um
exemplo conhecido é o BitTorrent, que permite uma partilha eficiente de ficheiros, mas sem
mecanismos centralizados de controlo, tornando mais facil a propagagdo de conteudos
maliciosos ou nao verificados (Tanenbaum & van Steen, 2007).
A confiabilidade no modelo P2P resulta em grande parte da replicagdo de dados. Esta pratica
assegura que a informagao esta disponivel em varios pontos da rede, mesmo em caso de falhas.
No entanto, levanta desafios ao nivel da consisténcia dos dados, exigindo mecanismos de
sincronizacgao adicionais.
Muitos sistemas modernos adotam uma abordagem hibrida, procurando equilibrar controlo e
escalabilidade. Por exemplo, servigos de streaming utilizam uma arquitetura cliente-servidor para
autenticagdo e gestao de utilizadores, mas distribuem contetdos por meio de redes de entrega
geograficamente distribuidas. As CDNs, descritas por Coulouris et al. (2011), melhoram a
eficiéncia e a laténcia ao aproximar os dados dos utilizadores finais, sem comprometer a
centralizagao das fungdes criticas.
Em sintese, o modelo cliente-servidor oferece maior controlo sobre a seguranga e simplifica o
desenvolvimento inicial. J& o modelo P2P destaca-se pela sua resiliéncia e escalabilidade,
embora exija maior complexidade para manter a integridade e a confianga no sistema. A escolha
Pagina 2 de 6



da arquitetura depende do contexto e das prioridades da aplicagao, podendo inclusive combinar

caracteristicas de ambos os modelos.

Referéncias Bibliograficas A2:

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and
design (5th ed.). Addison-Wesley.

Tanenbaum, A. S., & van Steen, M. (2007). Distributed systems: Principles and paradigms (2nd

ed.). Pearson Education.

Questdo A3:

Quais sao os desafios da gestao de consisténcia de dados em Sistemas Distribuidos, e como é
que os diferentes os modelos de consisténcia podem ser relevantes no desempenho e a
confiabilidade?

Resposta A3:

A consisténcia de dados é uma das preocupacdes centrais nos sistemas distribuidos, onde
multiplas réplicas de informagéo sdo mantidas em diferentes nés. O principal desafio consiste
em garantir que todas essas réplicas mantém o mesmo estado légico, apesar da laténcia da
rede, falhas de comunicagao e atualizagdes concorrentes (Coulouris et al., 2011). Este problema
€ agravado pelas limitagdes apontadas no teorema CAP, segundo o qual é impossivel, em
presenca de falhas de rede, garantir ao mesmo tempo consisténcia, disponibilidade e tolerancia
a partigcbes (Gilbert & Lynch, 2002).

A gestao eficaz da consisténcia exige que se escolha um modelo adequado, consoante os
requisitos da aplicagdo. O modelo de consisténcia forte, conforme descrito por Coulouris et al.
(2011), assegura que todas as leituras de um dado devolvem sempre o valor mais recente
escrito, independentemente de qual réplica é consultada. Este comportamento garante uma
visao uniforme e previsivel do sistema, sendo altamente relevante para aplicagdes que exigem
confiabilidade elevada, como sistemas bancarios ou clinicos. No entanto, o custo para manter
essa consisténcia é elevado em termos de desempenho, pois requer sincronizagao entre nos
antes de concluir operagdes de escrita.

Por oposicdo, o modelo de consisténcia eventual, descrito por Coulouris et al. (2011), permite
que, na auséncia de novas atualizagbes, as diferentes réplicas acabem por convergir para o
mesmo valor. Este modelo favorece a disponibilidade e o desempenho, pois ndo impde barreiras
& propagacdo imediata de atualizagdes. E amplamente adotado em sistemas de larga escala,
como redes sociais e servigos de cache distribuido. No entanto, este comportamento pode levar
a situagdes em que diferentes utilizadores visualizam vers6es distintas dos mesmos dados, o
que diminui a confiabilidade percebida (Coulouris et al., 2011).

Entre estes dois modelos, a consisténcia causal, apresentada por Coulouris et al. (2011),
representa um compromisso. Este modelo garante que operagdes logicamente relacionadas (por
exemplo, uma resposta que depende de uma pergunta anterior) sejam vistas na ordem correta.
No entanto, permite que operacbes independentes aparegam em ordens distintas. A sua
aplicacédo € particularmente util em ambientes colaborativos, como editores de documentos
online, onde manter a sequéncia dos eventos é essencial para a coeréncia do conteudo

partilhado.

Pagina 3 de 6



Além da escolha do modelo, ha ainda desafios técnicos relacionados com a detecao e resolucao
de conflitos, sobretudo quando diferentes réplicas sdo atualizadas em simultaneo. Em sistemas
com consisténcia eventual, a légica de aplicacdo precisa de lidar com estados divergentes,
recorrendo a estratégias como versdes baseadas em carimbos temporais ou politicas de "ultima
escrita vence" (Coulouris et al., 2011).

Muitos sistemas modernos adotam abordagens configuraveis, permitindo ao programador ajustar
o nivel de consisténcia conforme a operacgdo, o utilizador ou a localizacdo. Esta flexibilidade
reflete a necessidade de equilibrar o desempenho e a confiabilidade de forma contextual,
especialmente em ambientes globais e altamente distribuidos.

Em sintese, a gestdo da consisténcia em sistemas distribuidos exige decisbes bem
fundamentadas sobre o modelo a adotar, tendo em conta os compromissos entre resposta
rapida, integridade dos dados e tolerancia a falhas. Compreender os desafios e os efeitos

praticos de cada modelo € essencial para projetar sistemas robustos e eficientes.

Referéncias Bibliograficas A3:

Adya, A. (1999). Weak consistency: A generalized theory and optimistic implementations for
distributed transactions (Doctoral dissertation). Massachusetts Institute of Technology.
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and
design (5th ed.). Addison-Wesley.

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News, 33(2), 51-59.

Questdo B3:
De que forma o uso de algoritmos de consenso, por exemplo Paxos e Raft, afeta a confiabilidade

e o tempo de resposta em ambientes distribuidos?

Resposta B3:

Os sistemas distribuidos, ao dependerem da cooperagéo entre multiplos nés, enfrentam desafios
significativos ao nivel da coordenagéo e decisao partilhada. Nestes contextos, os algoritmos de
consenso tém um papel fundamental, pois permitem que todos os nés concordem sobre um
determinado valor ou estado, mesmo na presenca de falhas. A fiabilidade de muitos servigos
distribuidos modernos, como bases de dados replicadas ou sistemas de configuragao distribuida,
depende diretamente da existéncia de um mecanismo de consenso eficaz (Coulouris et al.,
2011).

Um dos algoritmos mais conhecidos € o Paxos, proposto por Lamport, que fornece uma solugao
tedrica robusta para alcangar consenso num ambiente com falhas e comunicagao assincrona. O
algoritmo é tolerante a falhas parciais e assegura que, se uma decisdo for tomada por um
subconjunto de nés, esta decisdo sera preservada, mesmo que outros nés entrem ou saiam da
rede. No entanto, o Paxos é frequentemente criticado pela sua complexidade de implementacgao
e por introduzir atrasos significativos, especialmente quando ha contengdo ou falhas na rede
(Coulouris et al., 2011).

Como alternativa mais pragmatica, surgiu o algoritmo Raft, que simplifica a I6gica do Paxos,
mantendo as mesmas garantias de seguranca. Raft estrutura o consenso em torno de uma figura
de lider, que centraliza as decisdes e as propaga aos restantes nés. Essa abordagem melhora a

compreensibilidade e facilita a implementagéo, sendo adotada em sistemas amplamente usados

Pagina 4 de 6



como o etcd ou o Consul. Tal como o Paxos, o Raft melhora substancialmente a fiabilidade do
sistema, ao garantir que todas as réplicas mantém o mesmo estado, mesmo apos falhas ou
reinicios (Ongaro & Ousterhout, 2014).

Contudo, essa garantia de consisténcia vem com um custo. Ambos os algoritmos requerem
varias trocas de mensagens para chegar a acordo, o que aumenta o tempo de resposta,
especialmente em redes com laténcia elevada. Por exemplo, em Raft, cada decisdo requer
confirmacdo de uma maioria dos ndés, o que implica pelo menos duas fases de comunicagao:
eleigéo do lider e replicagdo da entrada no log. Assim, embora a fiabilidade aumente, a laténcia
média por operagcédo também tende a subir, sobretudo em sistemas com elevado numero de nés
ou comunicagao intercontinental (Coulouris et al., 2011).

Além disso, algoritmos de consenso limitam a escalabilidade horizontal pura. Em grandes
clusters, o tempo necessario para obter quérum pode crescer, afetando a previsibilidade das
respostas. Por isso, muitos sistemas modernos optam por isolar o consenso apenas nas partes
criticas da arquitetura, mantendo outras componentes mais leves e rapidas.

Em suma, os algoritmos de consenso como Paxos e Raft sdo essenciais para garantir
confiabilidade e consisténcia em sistemas distribuidos sujeitos a falhas. No entanto, a sua
utilizagao deve ser cuidadosamente ponderada, tendo em conta o impacto no tempo de resposta

e o contexto operacional do sistema.

Referéncias Bibliograficas B3:

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and
design (5th ed.). Addison-Wesley.

Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm.
USENIX Annual Technical Conference.

Questao B4:

Como é que as arquiteturas baseadas em microservigos podem influenciar a eficiéncia e a
previsibilidade do tempo de resposta em Sistemas Distribuidos?

Resposta B4:

As arquiteturas baseadas em microservicos promovem a decomposi¢cdao de um sistema em
componentes pequenos, independentes e especializados. Esta abordagem contrasta com os
sistemas monoliticos, em que a légica de negdcio esta fortemente acoplada num unico bloco. Ao
separar funcionalidades em servicos autbnomos que comunicam entre si, 0s microservicos tém
um impacto direto na eficiéncia operacional e na previsibilidade do tempo de resposta (Coulouris
et al., 2011).

Um dos principais beneficios dos microservigos esta na eficiéncia do desenvolvimento e da
operagao. Cada servico pode ser desenvolvido, escalado e mantido de forma independente, o
que permite otimizagdes especificas por componente. Por exemplo, um servigco de autenticagao
pode ser escrito numa linguagem de alto desempenho, enquanto outro, de geragéo de relatorios,
pode priorizar a fiabilidade. Esta especializagdo contribui para respostas mais rapidas e
adaptadas a carga real (Newman, 2015).

A escalabilidade horizontal individualizada permite que servicos mais solicitados sejam
replicados conforme a necessidade. Isto é visivel em sistemas como o da Amazon, onde servigos

criticos tém réplicas adicionais e utilizam cache nos edge nodes para acelerar a resposta

Pagina 5 de 6



(Newman, 2015). Com isto, o sistema responde mais rapidamente aos pedidos mais frequentes

sem sobrecarregar a infraestrutura.

No entanto, os microservigos também introduzem complexidade na comunicagdo. Quando um
pedido depende de mudltiplos servigos encadeados, o tempo de resposta global depende da
laténcia cumulativa e da resiliéncia da cadeia de chamadas. Em sistemas como o da Netflix, esta
questao é mitigada através de circuit breakers como o Hystrix, que isolam falhas e impedem que
um servigo lento afete o sistema inteiro (Dragoni et al., 2017).

A comunicagao entre microservigos, baseada frequentemente em chamadas HTTP/gRPC, pode
ser menos previsivel do que chamadas locais em sistemas monoliticos. Para compensar essa
variabilidade, utilizam-se técnicas como balanceamento de carga local (ex: Netflix, que utiliza
ferramentas como Zuul e Ribbon) e retry com timeout ajustado, permitindo responder com
fiabilidade mesmo sob falha parcial (Coulouris et al., 2011).

A observabilidade distribuida também desempenha um papel importante. Ferramentas como
Zipkin e Prometheus monitorizam tempos de resposta por servico, permitindo identificar
rapidamente gargalos e ajustar as configuragdes de acordo com as métricas reais (Newman,
2015). Isto contribui para maior previsibilidade do desempenho numa arquitetura naturalmente
dindmica.

Em sintese, a arquitetura de microservigos pode melhorar a eficiéncia global e tornar os tempos
de resposta mais previsiveis, desde que sejam adotadas boas praticas de comunicagao,
isolamento e monitorizagdo. Com base em estratégias como escalabilidade seletiva, cache
localizada e tratamento preventivo de falhas, os microservigos tornam-se uma abordagem
poderosa para a construgao de sistemas distribuidos robustos e adaptaveis (Dragoni et al., 2017;
Coulouris et al., 2011).

Assim, as arquiteturas baseadas em microservigos, quando bem implementadas, contribuem nao
s6 para maior eficiéncia dos sistemas distribuidos, mas também para uma previsibilidade mais
controlada dos tempos de resposta, alinhando-se com os objetivos operacionais e de experiéncia

do utilizador.

Referéncias Bibliograficas B4:

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and
design (5th ed.). Addison-Wesley.

Newman, S. (2015). Building microservices: Designing fine-grained systems. O’Reilly Media.
Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.
(2017). Microservices: Yesterday, Today, and Tomorrow. In M. Mazzara & B. Meyer (Eds.),
Present and Ulterior Software Engineering (pp. 195-216). Springer.

Pagina 6 de 6



