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TRABALHO / RESOLUÇÃO: 

Questão A2:  
Como é que os modelos de arquiteturas distribuídas, por exemplo peer-to-peer e cliente servidor, 
têm impacto na segurança e a confiabilidade das aplicações distribuídas? 

Resposta A2: 
A arquitetura de um sistema distribuído influencia profundamente a forma como são geridas 

falhas, ameaças e o desempenho geral das aplicações. Os modelos cliente-servidor e peer-to-

peer (P2P) abordam estes desafios de maneiras distintas, afetando diretamente a segurança e 

a confiabilidade dos sistemas. 

No modelo cliente-servidor, há uma clara centralização. Um ou mais servidores fornecem 

serviços e dados, enquanto os clientes os consomem. Esta organização facilita a aplicação de 
políticas de segurança, como autenticação centralizada, controlo de acesso e registo de 

atividades, pois a maior parte da lógica está concentrada num único ponto (Coulouris et al., 

2011). No entanto, essa centralização também introduz riscos significativos. A existência de um 

ponto único de falha significa que, se o servidor for atacado ou tiver uma falha técnica, a aplicação 

pode tornar-se indisponível para todos os utilizadores. Ataques como negação de serviço (DDoS) 

exploram precisamente essa vulnerabilidade. 

Além disso, em sistemas altamente centralizados, a escalabilidade horizontal pode tornar-se 
complexa e a confiança do utilizador depende fortemente da robustez da infraestrutura. 

Exemplos práticos incluem plataformas de jogos online e lojas digitais, como Steam ou League 

of Legends. Nestes casos, o modelo facilita a gestão da segurança, mas exige elevada 

disponibilidade e manutenção dos servidores para garantir fiabilidade. 

Por oposição, a arquitetura peer-to-peer distribui funções por todos os nós da rede. Cada nó 

pode agir como cliente e servidor, o que reduz a dependência de qualquer entidade central. Esta 

descentralização melhora a tolerância a falhas, já que o sistema continua funcional mesmo que 

alguns nós se tornem inativos (Coulouris et al., 2011). Contudo, também dificulta a aplicação de 
políticas de segurança consistentes, como autenticação e verificação de integridade. Um 

exemplo conhecido é o BitTorrent, que permite uma partilha eficiente de ficheiros, mas sem 

mecanismos centralizados de controlo, tornando mais fácil a propagação de conteúdos 

maliciosos ou não verificados (Tanenbaum & van Steen, 2007). 

A confiabilidade no modelo P2P resulta em grande parte da replicação de dados. Esta prática 

assegura que a informação está disponível em vários pontos da rede, mesmo em caso de falhas. 

No entanto, levanta desafios ao nível da consistência dos dados, exigindo mecanismos de 

sincronização adicionais. 
Muitos sistemas modernos adotam uma abordagem híbrida, procurando equilibrar controlo e 

escalabilidade. Por exemplo, serviços de streaming utilizam uma arquitetura cliente-servidor para 

autenticação e gestão de utilizadores, mas distribuem conteúdos por meio de redes de entrega 

geograficamente distribuídas. As CDNs, descritas por Coulouris et al. (2011), melhoram a 

eficiência e a latência ao aproximar os dados dos utilizadores finais, sem comprometer a 

centralização das funções críticas. 

Em síntese, o modelo cliente-servidor oferece maior controlo sobre a segurança e simplifica o 
desenvolvimento inicial. Já o modelo P2P destaca-se pela sua resiliência e escalabilidade, 

embora exija maior complexidade para manter a integridade e a confiança no sistema. A escolha 
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da arquitetura depende do contexto e das prioridades da aplicação, podendo inclusive combinar 

características de ambos os modelos. 

Referências Bibliográficas A2: 
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and 

design (5th ed.). Addison-Wesley. 

Tanenbaum, A. S., & van Steen, M. (2007). Distributed systems: Principles and paradigms (2nd 

ed.). Pearson Education. 

Questão A3:  
Quais são os desafios da gestão de consistência de dados em Sistemas Distribuídos, e como é 

que os diferentes os modelos de consistência podem ser relevantes no desempenho e a 

confiabilidade? 

Resposta A3: 
A consistência de dados é uma das preocupações centrais nos sistemas distribuídos, onde 

múltiplas réplicas de informação são mantidas em diferentes nós. O principal desafio consiste 

em garantir que todas essas réplicas mantêm o mesmo estado lógico, apesar da latência da 
rede, falhas de comunicação e atualizações concorrentes (Coulouris et al., 2011). Este problema 

é agravado pelas limitações apontadas no teorema CAP, segundo o qual é impossível, em 

presença de falhas de rede, garantir ao mesmo tempo consistência, disponibilidade e tolerância 

a partições (Gilbert & Lynch, 2002). 

A gestão eficaz da consistência exige que se escolha um modelo adequado, consoante os 

requisitos da aplicação. O modelo de consistência forte, conforme descrito por Coulouris et al. 

(2011), assegura que todas as leituras de um dado devolvem sempre o valor mais recente 

escrito, independentemente de qual réplica é consultada. Este comportamento garante uma 
visão uniforme e previsível do sistema, sendo altamente relevante para aplicações que exigem 

confiabilidade elevada, como sistemas bancários ou clínicos. No entanto, o custo para manter 

essa consistência é elevado em termos de desempenho, pois requer sincronização entre nós 

antes de concluir operações de escrita. 

Por oposição, o modelo de consistência eventual, descrito por Coulouris et al. (2011), permite 

que, na ausência de novas atualizações, as diferentes réplicas acabem por convergir para o 

mesmo valor. Este modelo favorece a disponibilidade e o desempenho, pois não impõe barreiras 

à propagação imediata de atualizações. É amplamente adotado em sistemas de larga escala, 
como redes sociais e serviços de cache distribuído. No entanto, este comportamento pode levar 

a situações em que diferentes utilizadores visualizam versões distintas dos mesmos dados, o 

que diminui a confiabilidade percebida (Coulouris et al., 2011). 

Entre estes dois modelos, a consistência causal, apresentada por Coulouris et al. (2011), 

representa um compromisso. Este modelo garante que operações logicamente relacionadas (por 

exemplo, uma resposta que depende de uma pergunta anterior) sejam vistas na ordem correta. 

No entanto, permite que operações independentes apareçam em ordens distintas. A sua 
aplicação é particularmente útil em ambientes colaborativos, como editores de documentos 

online, onde manter a sequência dos eventos é essencial para a coerência do conteúdo 

partilhado.  
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Além da escolha do modelo, há ainda desafios técnicos relacionados com a deteção e resolução 

de conflitos, sobretudo quando diferentes réplicas são atualizadas em simultâneo. Em sistemas 

com consistência eventual, a lógica de aplicação precisa de lidar com estados divergentes, 

recorrendo a estratégias como versões baseadas em carimbos temporais ou políticas de "última 

escrita vence" (Coulouris et al., 2011). 

Muitos sistemas modernos adotam abordagens configuráveis, permitindo ao programador ajustar 

o nível de consistência conforme a operação, o utilizador ou a localização. Esta flexibilidade 

reflete a necessidade de equilibrar o desempenho e a confiabilidade de forma contextual, 
especialmente em ambientes globais e altamente distribuídos. 

Em síntese, a gestão da consistência em sistemas distribuídos exige decisões bem 

fundamentadas sobre o modelo a adotar, tendo em conta os compromissos entre resposta 

rápida, integridade dos dados e tolerância a falhas. Compreender os desafios e os efeitos 

práticos de cada modelo é essencial para projetar sistemas robustos e eficientes. 

Referências Bibliográficas A3: 
Adya, A. (1999). Weak consistency: A generalized theory and optimistic implementations for 
distributed transactions (Doctoral dissertation). Massachusetts Institute of Technology. 

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and 

design (5th ed.). Addison-Wesley. 

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, 

partition-tolerant web services. ACM SIGACT News, 33(2), 51–59. 

Questão B3:  
De que forma o uso de algoritmos de consenso, por exemplo Paxos e Raft, afeta a confiabilidade 

e o tempo de resposta em ambientes distribuídos? 

Resposta B3: 
Os sistemas distribuídos, ao dependerem da cooperação entre múltiplos nós, enfrentam desafios 

significativos ao nível da coordenação e decisão partilhada. Nestes contextos, os algoritmos de 

consenso têm um papel fundamental, pois permitem que todos os nós concordem sobre um 

determinado valor ou estado, mesmo na presença de falhas. A fiabilidade de muitos serviços 

distribuídos modernos, como bases de dados replicadas ou sistemas de configuração distribuída, 

depende diretamente da existência de um mecanismo de consenso eficaz (Coulouris et al., 

2011). 
Um dos algoritmos mais conhecidos é o Paxos, proposto por Lamport, que fornece uma solução 

teórica robusta para alcançar consenso num ambiente com falhas e comunicação assíncrona. O 

algoritmo é tolerante a falhas parciais e assegura que, se uma decisão for tomada por um 

subconjunto de nós, esta decisão será preservada, mesmo que outros nós entrem ou saiam da 

rede. No entanto, o Paxos é frequentemente criticado pela sua complexidade de implementação 

e por introduzir atrasos significativos, especialmente quando há contenção ou falhas na rede 

(Coulouris et al., 2011). 
Como alternativa mais pragmática, surgiu o algoritmo Raft, que simplifica a lógica do Paxos, 

mantendo as mesmas garantias de segurança. Raft estrutura o consenso em torno de uma figura 

de líder, que centraliza as decisões e as propaga aos restantes nós. Essa abordagem melhora a 

compreensibilidade e facilita a implementação, sendo adotada em sistemas amplamente usados 
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como o etcd ou o Consul. Tal como o Paxos, o Raft melhora substancialmente a fiabilidade do 

sistema, ao garantir que todas as réplicas mantêm o mesmo estado, mesmo após falhas ou 

reinícios (Ongaro & Ousterhout, 2014). 

Contudo, essa garantia de consistência vem com um custo. Ambos os algoritmos requerem 

várias trocas de mensagens para chegar a acordo, o que aumenta o tempo de resposta, 

especialmente em redes com latência elevada. Por exemplo, em Raft, cada decisão requer 

confirmação de uma maioria dos nós, o que implica pelo menos duas fases de comunicação: 

eleição do líder e replicação da entrada no log. Assim, embora a fiabilidade aumente, a latência 
média por operação também tende a subir, sobretudo em sistemas com elevado número de nós 

ou comunicação intercontinental (Coulouris et al., 2011). 

Além disso, algoritmos de consenso limitam a escalabilidade horizontal pura. Em grandes 

clusters, o tempo necessário para obter quórum pode crescer, afetando a previsibilidade das 

respostas. Por isso, muitos sistemas modernos optam por isolar o consenso apenas nas partes 

críticas da arquitetura, mantendo outras componentes mais leves e rápidas. 

Em suma, os algoritmos de consenso como Paxos e Raft são essenciais para garantir 
confiabilidade e consistência em sistemas distribuídos sujeitos a falhas. No entanto, a sua 

utilização deve ser cuidadosamente ponderada, tendo em conta o impacto no tempo de resposta 

e o contexto operacional do sistema. 

Referências Bibliográficas B3: 
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and 

design (5th ed.). Addison-Wesley. 

Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm. 

USENIX Annual Technical Conference. 

Questão B4:  
Como é que as arquiteturas baseadas em microserviços podem influenciar a eficiência e a 

previsibilidade do tempo de resposta em Sistemas Distribuídos? 

Resposta B4: 
As arquiteturas baseadas em microserviços promovem a decomposição de um sistema em 

componentes pequenos, independentes e especializados. Esta abordagem contrasta com os 

sistemas monolíticos, em que a lógica de negócio está fortemente acoplada num único bloco. Ao 

separar funcionalidades em serviços autónomos que comunicam entre si, os microserviços têm 
um impacto direto na eficiência operacional e na previsibilidade do tempo de resposta (Coulouris 

et al., 2011). 

Um dos principais benefícios dos microserviços está na eficiência do desenvolvimento e da 

operação. Cada serviço pode ser desenvolvido, escalado e mantido de forma independente, o 

que permite otimizações específicas por componente. Por exemplo, um serviço de autenticação 

pode ser escrito numa linguagem de alto desempenho, enquanto outro, de geração de relatórios, 

pode priorizar a fiabilidade. Esta especialização contribui para respostas mais rápidas e 
adaptadas à carga real (Newman, 2015). 

A escalabilidade horizontal individualizada permite que serviços mais solicitados sejam 

replicados conforme a necessidade. Isto é visível em sistemas como o da Amazon, onde serviços 

críticos têm réplicas adicionais e utilizam cache nos edge nodes para acelerar a resposta 
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(Newman, 2015). Com isto, o sistema responde mais rapidamente aos pedidos mais frequentes 

sem sobrecarregar a infraestrutura. 

 

No entanto, os microserviços também introduzem complexidade na comunicação. Quando um 

pedido depende de múltiplos serviços encadeados, o tempo de resposta global depende da 

latência cumulativa e da resiliência da cadeia de chamadas. Em sistemas como o da Netflix, esta 

questão é mitigada através de circuit breakers como o Hystrix, que isolam falhas e impedem que 

um serviço lento afete o sistema inteiro (Dragoni et al., 2017). 
A comunicação entre microserviços, baseada frequentemente em chamadas HTTP/gRPC, pode 

ser menos previsível do que chamadas locais em sistemas monolíticos. Para compensar essa 

variabilidade, utilizam-se técnicas como balanceamento de carga local (ex: Netflix, que utiliza 

ferramentas como Zuul e Ribbon) e retry com timeout ajustado, permitindo responder com 

fiabilidade mesmo sob falha parcial (Coulouris et al., 2011). 

A observabilidade distribuída também desempenha um papel importante. Ferramentas como 

Zipkin e Prometheus monitorizam tempos de resposta por serviço, permitindo identificar 
rapidamente gargalos e ajustar as configurações de acordo com as métricas reais (Newman, 

2015). Isto contribui para maior previsibilidade do desempenho numa arquitetura naturalmente 

dinâmica. 

Em síntese, a arquitetura de microserviços pode melhorar a eficiência global e tornar os tempos 

de resposta mais previsíveis, desde que sejam adotadas boas práticas de comunicação, 

isolamento e monitorização. Com base em estratégias como escalabilidade seletiva, cache 

localizada e tratamento preventivo de falhas, os microserviços tornam-se uma abordagem 

poderosa para a construção de sistemas distribuídos robustos e adaptáveis (Dragoni et al., 2017; 
Coulouris et al., 2011). 

Assim, as arquiteturas baseadas em microserviços, quando bem implementadas, contribuem não 

só para maior eficiência dos sistemas distribuídos, mas também para uma previsibilidade mais 

controlada dos tempos de resposta, alinhando-se com os objetivos operacionais e de experiência 

do utilizador. 

Referências Bibliográficas B4: 
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems: Concepts and 

design (5th ed.). Addison-Wesley. 
Newman, S. (2015). Building microservices: Designing fine-grained systems. O’Reilly Media. 

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. 

(2017). Microservices: Yesterday, Today, and Tomorrow. In M. Mazzara & B. Meyer (Eds.), 

Present and Ulterior Software Engineering (pp. 195–216). Springer. 


