ARQUITECTURA DE COMPUTADORES | 21010

Data e hora de realização

11 de julho de 2022, às 10h de Portugal Continental

Duração da prova

120m + 60m

Instruções

- O estudante deverá responder à prova na folha de resolução.
- A cotação é indicada junto de cada pergunta.
- A prova é individual, mas pode ser realizada com consulta. Todos os elementos consultados devem ser referenciados na prova.
- A interpretação dos enunciados das perguntas também faz parte da sua resolução, pelo que, se existir alguma ambiguidade, deve indicar claramente como foi resolvida.
- A prova tem 4 grupos, a cotação total de cada grupo é de 5 valores, sendo a cotação de cada uma das questões indicada junto do enunciado da mesma, entre [].
- As suas respostas devem ser claras, indicando todos os passos seguidos na resolução de cada questão. Resultados

apresentados sem justificação poderão incorrer num desconto de $\frac{1}{2}$ da cotação total da questão.

• Atenção: nesta prova considere os 3 dígitos menos significativos do seu número de estudante. Exemplo: no número de estudante 2012345, os três dígitos menos significativos são o número 345. No enunciado é utilizado d2 para referir o terceiro dígito menos significativo (aqui 3), ao d1 o segundo dígito menos significativo (aqui 4) e ao d0 o dígito menos significativo (aqui 5). Existem também questões que utilizam valores binários com base na paridade destes dígitos. Neste caso as variáveis utilizadas são b2 a b0, ficando com 1 para os dígitos par e com 0 para os dígitos ímpar. No caso deste exemplo, apenas d1 é par, pelo que b2 e b0 são 0, e b1 é 1. Deve preencher na folha de resolução a seguinte tabela, aqui preenchida com o exemplo.

Número: (exemplo: 2012345)

Dígito	Valor	Binário	Valor
d ₂	(exemplo: 3)	b ₂	(exemplo: 0)
d ₁	(exemplo: 4)	b ₁	(exemplo: 1)
do	(exemplo: 5)	b ₀	(exemplo: 0)

Enunciado

Grupo I (5 valores)

1. Considere uma função lógica F(A,B,C,D), em que A é a variável de maior peso e D a variável de menor peso. A distribuição de mintermos (m) e indiferenças (md) da função F(A,B,C,D) é a seguinte:

$$\sum m(1+d_0,2+d_1,6+d_2,2,4,12) + \sum md(5+d_0,5+d_1,1+d_2,0,11,13)$$

- **1. a)** [1.5] Construa o mapa de Karnaugh e simplifique a função de modo a obter uma soma de produtos.
- **1. b) [0.5]** Duplique o mapa obtido na alínea anterior e simplifique a expressão de forma a obter um produto de somas.

NOTA: d_2 , d_1 e d_0 são extraídos do seu número de estudante, de acordo com as instruções do enunciado. No caso do mesmo número ficar como mintermo e indiferença, considere que o número está apenas nos mintermos. No caso do número de exemplo os mintermos ficam 1+5=6, 2+4=6, 6+3=9, 2, 4, 12 e as indiferenças 5+5=10, 5+4=9, 1+3=4, 0, 11, 13 e como o 9 e 4 estão em ambos, são retirados das indiferenças.

NOTA: Na sua resolução marque os laços utilizados no mapa, e faça corresponder cada termo da função resultante com o laço que lhe dá origem. Caso contrário a resposta não se considera justificada.

- **2.** Efectue as seguintes conversões entre bases numéricas:
 - **2. a)** [0.5] Represente o número d_1d_1 Dh em base 8.
 - **2. b)** [0.5] Represente o número d_0 448 em base 10.

NOTA: no caso da alínea b, se alguns dos dígitos forem 8 ou 9, considere que têm o valor 4.

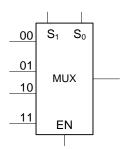
- **3.** Efetue as seguintes conversões:
 - **3.a)** [1] Represente o número -d₁9 em binário com 8 bits, utilizando a técnica de complemento para 2.
 - **3.b)** [1] Considere a seguinte norma, baseada na recomendação IEEE-754, mas adaptada para 16 bits: S=1, E=5, F=10; Número=(-1)^S * 1,F * 2^(E-15). Represente em notação decimal, o número: $\overline{b_0}1b_1\overline{b_2}101b_10\overline{b_1}000000$

NOTA: no caso da alínea b, no caso do número de exemplo, o número fica: 1111101100000000

Grupo II (5 valores)

Considere a seguinte função lógica de três variáveis F(A,B,C):

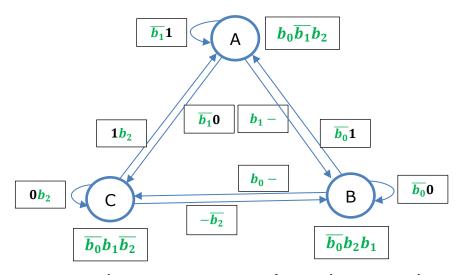
$$F(A, B, C) = \overline{A\overline{b_0}} + (B + Cb_0) \cdot (B\overline{C} + BC\overline{b_1}) + (\overline{A}B + \overline{C}Ab_1 + \overline{B}C)$$
$$\cdot \overline{AB\overline{C} + AC\overline{B} + \overline{b_2}BC\overline{A}} + A\overline{B}Cb_2 + A \cdot \overline{B}\overline{C} + \overline{A}\overline{B}C$$


Formato alternativo linear:

$$/(A/b_0+(B+Cb_0)(B/C+BC/b_1))+$$

 $(/AB+/CAb_1+/BC)./(AB/C+AC/B+/b_2BC/A)+A/BCb_2+A/(BC)+/A/BC$

NOTA: No caso do número de exemplo, a expressão fica:


- **1.** [1.5] Simplifique algebricamente a função F.
- **2. [1]** Indique uma expressão lógica que implemente a função *F* utilizando apenas portas NAND, desenhando o circuito correspondente.

- **3. [1]** Indique uma expressão lógica que implemente a função *F* utilizando apenas portas NOR, desenhando o circuito correspondente.
- **4. [1.5]** Implemente a função recorrendo a um multiplexer de 2 variáveis de seleção, em que a variável S_1 =B e S_0 =A.

Grupo III (5 valores)

Considere o Diagrama de Estados seguinte:

Existem duas variáveis de entrada e três variáveis de saída. As saídas são dependentes apenas do estado atual. Notar que um traço – representa ambas as hipóteses de uma variável de entrada, por exemplo 1- significa 10 e 11. Uma representação equivalente seria 10, 11. Pretende-se construir um circuito digital síncrono que implemente este diagrama, utilizando flip-flops tipo D.

1. [2] Construa a tabela de transição de estados correspondente ao diagrama de estados.

- **2.** [2] Simplifique as variáveis de saída e de estado.
- **3. [1]** Desenhe o circuito digital pretendido.

Grupo IV (5 valores)

- **1. [2]** Indique as instruções, em assembly do P3, que implementam as seguintes funcionalidades:
 - **1. a)** Escreva em assembly do P3 uma instrução que: Chamada condicional à sub-rotina "rotina", se a última operação aritmética/lógica teve resultado não negativo (bit mais significativo a 0)
 - **1. b)** Escreva em assembly do P3 uma instrução que: Coloca em R1 a soma de R1 com o valor da posição de memória "W"
 - 1. c) Escreva em assembly do P3 uma instrução que: Coloca em R1 o topo da pilha, removendo o elemento da pilha
 - **1. d)** Escreva em assembly do P3 uma instrução que: Desativa bit de transporte
- **2. [3]** Elabore um programa no assembly do P3. Dada uma string com apenas letras minúsculas, e uma chave, implemente a Cifra de César. Neste método, cada letra L é convertida em outra letra W, adicionando às letras o valor da chave. Consider que a letra seguinte à letra 'z', é a letra 'a'. O programa recebe o valor da chave em R1, e o endereço com o início da string em R2, devendo a string ser totalmente codificada. A string termina com o valor 0. Exemplo: a string "abcz" e a chave 1, fica "bcda". Nota: a seguinte fórmula tem para uma letra arbitrária L, a sua conversão W pretendida: W = 'a' + (L-'a' + Chave)%('z'-'a' + 1)

Anexo

Primeiras potências de 2:

1	2	4	8	16	32	64	128
256	512	1024	2048	4096	8192	16384	32768

Conjunto de Instruções do Processador P3:

Aritmétic as	Lógic as	Deslocamen to	Control o de Fluxo	Transferên cia de Dados	Divers as
NEG	COM	SHR	BR	MOV	NOP
INC	AND	SHL	BR.cond	MVBH	ENI
DEC	OR	SHRA	JMP	MVBL	DSI
ADD	XOR	SHLA	JMP.con	XCH	STC
			d		
ADDC	TEST	ROR	CALL	PUSH	CLC
SUB		ROL	CALL.co	POP	CMC
			nd		
SUBB		RORC	RET		
CMP		ROLC	RETN		
MUL			RTI		
DIV			INT		

Conjunto de Condições de Salto:

Condição	Mnemónica	
Zero	Z	
Não Zero	NZ	
Transporte (Carry)	С	
Não Transporte	NC	
Negativo	N	
Não Negativo	NN	
Excesso (Overflow)	0	
Não Excesso	NO	
Positivo	Р	
Não Positivo	NP	
Interrupção	I	
Não Interrupção	NI	