UNIDADE CURRICULAR: ELEMENTOS DE PROBABILIDADES E ESTATÍS-

TICA

CÓDIGO: 21037

DOCENTE: Catarina Nunes

TUTOR: Elsa Negas

PROPOSTA DE RESOLUÇÃO

- 1. O primeiro passo seria ordenar os valores das idades dos trabalhadores.
 - antes dos despedimentos:

25 33 35 38 48 55 55 55 56 64

depois dos despedimentos:

25 33 35 38 48 55 56

1.1 - 0.35 valores

Antes da ronda de despedimentos existem 10 trabalhadores, n =10, a soma das idades é 464, a média= 464/10 = 46.4 anos. (50% da cotação)

Depois dos depedimentos ficam apenas 7 trabalhadores, n=7, a soma das idades destes é 290, a média = 290/7 = 41.4 anos. (50% da cotação)

Os despedimentos reduziram a média de idades em 5 anos.

1.2 - 0.5 valores

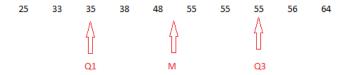
Antes da ronda de despedimentos existem 10 trabalhadores, n =10, portanto $\frac{n+1}{2}=\frac{11}{2}=5.5$, e a mediana está entre o valor da 5^a e o valor da 6^a ordem, ou seja entre 48 e 55. A mediana é $\frac{48+55}{2}=51.5$ anos. (50% da cotação)

Depois da ronda de despedimentos existem 7 trabalhadores, n =7, portanto $\frac{n+1}{2} = \frac{8}{2} = 4$, e a mediana é o valor da 4ª ordem, ou seja 38 anos. (50% da cotação)

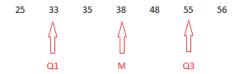
Os depedimentos reduziram a mediana de idades em 13.5 anos.

1.3 - 0.75 valores

• Antes dos despedimentos existem 10 trabalhadores e a mediana está localizada entre os dois valores do meio (48 e 55) e é 51.5. A metade inferior dos dados é composta pelos primeiros 5 valores, e a mediana de 5 valores está localizada na 3º posição, portanto $Q_1=35$. A metade superior dos dados também é composta por 5 valores (os 5 maiores valores), e a mediana destes está novamente localizada na 3ª posição, $Q_3=55$. O intervalor interquartil é $Q_3-Q_1=55-35=20$. (50% da cotação)



• Depois dos despedimentos existem 7 trabalhadores, como n é ímpar e a mediana está localizada na posição do meio, 4^a posição, e é 38. A metade inferior dos dados é composta pelos primeiros 3 valores, e a mediana de 3 valores está localizada na 2^o posição, portanto $Q_1=33$. A metade superior dos dados também é composta por 3 valores (os 3 maiores valores), e a mediana destes está novamente localizada na 2^a posição, $Q_3=55$. O intervalor interquartil é $Q_3-Q_1=55-33=233$. (50% da cotação)



Inesperadamente o intervalo interquartil é ligeiramente maior depois dos despedimentos, ou seja, depois de três trabalhadores mais velhos serem removidos. Este exemplo ilustra de como devemos ser cautelosos ao utilizar a mediana e quartis em amostra muito pequenas e quando existem falhas de dados na distribuição.

2.

2.1 - 0.3 valores

Tabela de frequências:

Número de Ataques, \boldsymbol{x}	Frequência, f		
0	3		
1	3		
3	2		
5	1		
6	1		
7	3		
8	2		
9	1		
14	1		
15	1		

2.2 - 0.5 valores

Tabela auxiliar

x.f	$x - \bar{x}$	$(x-\bar{x})^2$	$(x-\bar{x})^2.f$	
0	-5.28	27.88	83.64	
3	-4.28	18.32	54.96	
6	-2.28	5.20	10.40	
5	-0.28	0.08	0.08	
6	0.72	0.52	0.52	
21	1.72	2.96	8.88	
16	2.72	7.40	14.80	
9	8.72	76.04	76.04	
14	8.72	76.04	76.04	
15	9.72	94.48	94.48	
Total = 95			= 357.61	

Média=
$$\bar{x}=\frac{\sum x.f}{n}=\frac{95}{18}=5.28$$
 (50% da cotação). Desvio padrão= $s=\sqrt{\frac{\sum (x-\bar{x})^2.f}{n-1}}=\sqrt{\frac{357.61}{18-1}}=4.59$ (50% da cotação).

Num ano normal, nos EUA há em média 5.28 aeronaves que são atingidas por répteis, mais ou menos 4.59 ataques.

3. Como existem 6 faces em cada dado e os dados são equilibrados, temos $6 \times 6 = 36$ possiveis resultados com igual probabilidade (= 1/36). A seguinte tabela mostra o espaço de resultados:

Faces	1	2	3	4	5	6
1	1-1	1-2	1-3	1-4	1-5	1-6
2	2-1	2-2	2-3	2-4	2-5	2-6
3	3-1	3-2	3-3	3-4	3-5	3-6
4	4-1	4-2	4-3	4-4	4-5	4-6
5	5-1	5-2	5-3	5-4	5-5	5-6
6	6-1	6-2	6-3	6-4	6-5	6-6

3.1 - 0.4 valores

Seja:

A - o evento de obter um duplo no lançamento dos dados; (25% da cotação)

Existem 6 possiveis resultados de obter duplo:

$$P(A) = 6 \times \frac{1}{36} = 0,166(6)$$

(75% da cotação)

3.2 - 0.6 valores

Sejam:

B- o evento de obter 7 no lançamento dos dados;

C - o evento de obter 8 no lançamento dos dados;

(25% da cotação)

No mesmo lançamento, estes dois eventos são mutamente exclusivos: $P(B \cap C) = 0$ (25% da cotação).

Então

$$P(B \cup C) = P(B) + P(C) = \frac{6}{36} + \frac{5}{36} = \frac{11}{36} = 0.305(5)$$

(50% da cotação)

3.3 - 0.6 valores

Sejam:

A - o evento de obter um duplo no lançamento dos dados;

C - o evento de obter 8 no lançamento dos dados;

(25% da cotação)

Estes dois eventos não são mutuamente exclusivos, porque existe um resultado comum (4 em ambos os dados), que ocorre com probabilidade 1/36 (25% da cotação).

$$P(A \cup C) = P(A) + P(C) - P(A \cap C) = \frac{6}{36} + \frac{5}{36} - \frac{1}{36} = \frac{10}{36} = 0.27(7)$$
 (50% da cotação)

FIM