
Ministério da Ciência, Tecnologia e Ensino Superior

U.C. 21180

Computação Numérica

19 de dezembro de 2025 a 5 de janeiro de 2026

– Leia estas instruções na totalidade antes de iniciar a resolução da prova.

– Este enunciado constitui o elemento de avaliação designado por "e-fólio B"no
âmbito da avaliação contínua e tem a cotação total de 4 valores.

– A resolução deve ser entregue através de um único ficheiro compactado .zip
contendo os ficheiros .m e o ficheiro relatorio.pdf.

– Nota ética: O trabalho deve ser original. Não é permitida a consulta a agentes
de IA para geração de código.

Grupo I [4 valores]

1. Os métodos iterativos são essenciais para a resolução de grandes sistemas
lineares esparsos, onde os métodos diretos (como a Eliminação de Gauss) são
computacionalmente custosos. O objetivo deste trabalho é implementar e ana-
lisar o Método SOR (Successive Over-Relaxation).

1.1. [1.0] A convergência dos métodos iterativos clássicos é garantida se a
matriz de coeficientes A for estritamente dominante diagonalmente por linhas.
Escreva a função verif_dominancia(A).

function [is_dom, r] = verif_dominancia(A)
%
% Verifica se a matriz A é estritamente dominante diagonalmente
% A: Matriz quadrada de coeficientes
% is_dom: booleano (true se for dominante, false caso contrário)
% r: vetor com a razão (soma extra-diagonal / diagonal) por linha

A função deve retornar true apenas se |aii| >
∑

j ̸=i |aij| para todas as linhas
i. O vetor de saída r deve conter, para cada linha, o rácio de ocupação, per-
mitindo identificar as linhas mais problemáticas para a convergência. Utilize
operações vetoriais sempre que possível.

1.2. [1.5] Escreva a função solve_sor(A, b, omega, x0, tol, max_iter)
que implemente o método SOR para resolver Ax = b. A atualização de cada
componente xi na iteração k + 1 segue a expressão:

x
(k+1)
i = (1 − ω)x(k)

i + ω

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j


function [x, iter] = solve_sor(A, b, omega, x0, tol, max_iter)
%
% Resolve Ax=b pelo método SOR
% omega: fator de relaxamento
% x0: estimativa inicial
% tol: tolerância de paragem (norma infinito do erro entre iterações)
% x: vetor solução; iter: número de iterações realizadas

Requisitos:

• Implemente o critério de paragem ∥x(k+1) − x(k)∥∞ < tol.
• Se exceder max_iter, a função deve avisar o utilizador e devolver a última

aproximação.
• Não utilize a inversão de matrizes (inv).

1.3. [1.5] Elabore um script de teste efb_sor.m que:

• Crie uma matriz A de dimensão 100 × 100 tridiagonal e dominante (ex:
diagonal principal = 4, diagonais superior/inferior = −1). Defina b tal
que a solução exata seja um vetor de uns.

• Utilize a função da alínea 1.1 para validar a matriz.
• Resolva o sistema usando a função da alínea 1.2 para três valores de ω:

– ω = 1.0 (Gauss-Seidel)
– ω = 1.25 (Sobrerrelaxamento otimizado)
– ω = 1.8 (Alto relaxamento)

• Compare o número de iterações assim como o tempo de execução obtido
em cada caso e comente os resultados no relatório, discutindo a influência
do parâmetro ω na velocidade de convergência.

Todos os ficheiros devem ter o cabeçalho de identificação padrão.

2

Critérios de correção

• Não é permitida a utilização de variáveis globais (uso da palavra chave "global")
nem da função fplot().

• Não é permitida a utilização de funções já existentes no Octave análogas às que
se pretendem desenvolver nem a utilização de funções de pacotes de software
(packages) adicionais à instalação base do Octave.

• As funções pedidas devem implementar rigorosamente a interface de argumen-
tos de entrada e de saída indicados. Não devem pedir dados ao utilizador nem
imprimir dados ou gráficos não solicitados no enunciado.

• Os programas devem empregar sempre que possível operações vetoriais e/ou
matriciais (ex. produto interno de vetores, etc) em detrimento de ciclos que
manipulam simples escalares.

• O código dos programas deve estar correta e uniformemente indentado de
modo a permitir a sua leitura fácil.

• Os programas devem estar estruturados, comentados e em conjunto com o
relatório explicados de modo à fácil compreensão da sua estrutura e funciona-
mento.

• Os programas que não funcionem corretamente ou não cumpram todas as
especificações ou sejam demasiado complexos ⇒ de 0 a 100% valores, sendo
cada programa avaliado como um todo e tendo em conta a implementação das
características pedidas.

FIM

3

