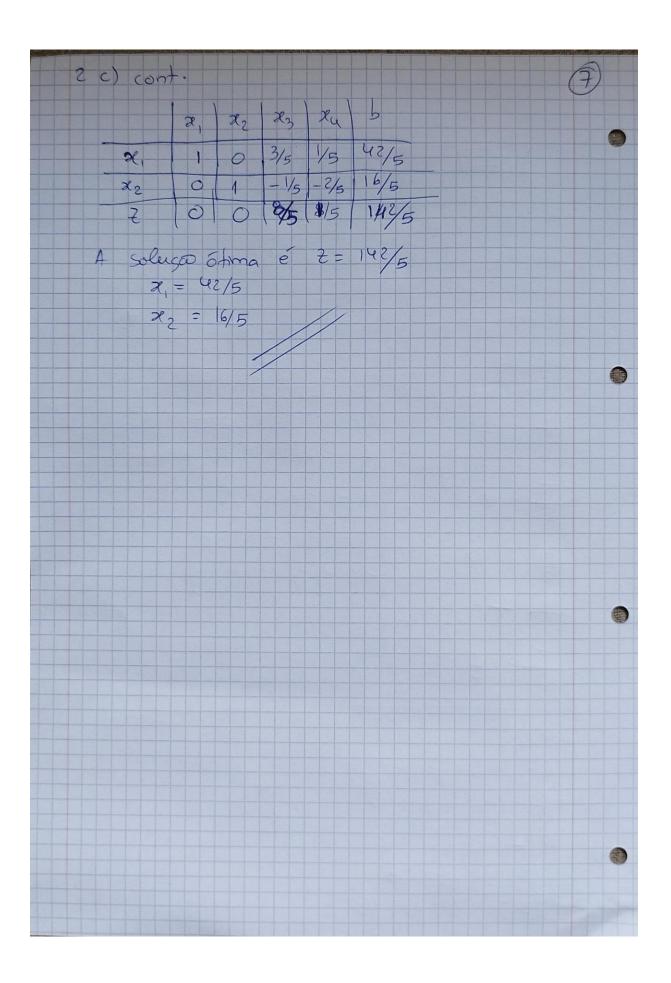

99-		-
1	E-fólio A Instruções para a realização do E-fólio	Aberta
	E-fôlio A Instruções para a realização do E-fólio	

Investigação Operacional | 21076

Nome: Vera Clánicia Te	ixeira do Amard		
	Nº de Estudante: 2201096		
Curso: LEI	Turma:		
Data: 4/4/2023	Ano Lectivo: 2022/23		
Docentes: Patrícia Engrácia, Elsa Negas e Clarence Protin			



• max
$$f = 3x + 4y$$

sujeito a: $\begin{cases} 2 \times + y \le 20 \\ x + 3y > 18 \\ x, y > 0 \end{cases}$
a) Para poder resolver groframenk o P:1.
Var corresponder por definite as rector quellimitem
a área de seluções passíveis.
 $2x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 \text{ est} = 20 - 2x$
 $x + y = 20 - 2x$

2 c) cont:
Trimos de alticional també in uma privile
artificial e dépiis começannos a aplicer o
metodo dos duos fuse do Simplex.
Ficannos com as restrições:
2 x,
$$+ x_2 + x_3 = 20$$

x, $+ 3x_2 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 3x_2 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - x_4 + a_4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - x_3 - x_4 - 4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_2 + x_2 - x_3 - x_4 - 4 = 18$
 $x_{1,x_2,x_3,x_4, a_4 > 0$
1° fase
 $x_1 + 32 - 4 - 3 - 0 - 1 - 1 - 18$
Sai da base a_1 e entra x_2 freque o coeficiente
de 2 com meior veler absoluto e o de x_2 (-3)).
E va coluna do x_2 frequenos θ .
 $\theta = min \frac{2^{20}}{12^{20}}, \frac{1}{2^{3}}, \frac{1}{2^{3}}, \frac{1}{2^{20}}, \frac{1}{2^{20}}$

zercont: fila do Z:	6
$-18 - (-3 \times 6) = 0$	
$-1 - (-3 \times 1) = 0$	
$-3 - (-3 \times 1) = 0$ 0 - (-3 × 0) = 0	
$1 - (-3 \times (-1/3)) = 0$	
$O - (-3 \times \frac{1}{3}) = 1$	
x, x2 x3 x4 a1 b	
23 2/3 0 1 1/3 - 1/3 14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	۲
Como encontramos cerna solação possível pore o problema (metriz identade) vernos	
pore a 2° fese.	
2ª Fose	
Vamos eliminar a coluna de variavel artifical	
Vamos modifica a fila da funço objetvo pele	۲
Le probleme originel. Céleulos:	
$-0+(0\times14)+(1\times6)=6$	
$-3 + (0 \times \frac{5}{3}) + (1 \times \frac{1}{3}) = -\frac{8}{3}$	
$-1 + (0 \times 0) + (1 \times 1) = 0$	
$-0 + (0 \times 1) + (1 \times 0) = 0$ -0 + (0 \times \frac{1}{3}) + 1 \times (-\frac{1}{3}) = -\frac{1}{3}	
	0

