> b

‘ E'f6|i° B I Folha de resolucéo para E-falio

B AbERTA

UNIDADE CURRICULAR: LINGUAGENS E COMPUTACAO
CODIGO: 21078

DOCENTE: Constantino Martins

A preencher pelo estudante

NOME:

N.° DE ESTUDANTE:

CURSO: Licenciatura em Engenharia Informatica

DATA DE ENTREGA: 14/01/2026

Pagina 1 de 11

TRABALHO / RESOLUCAO:

1.a - A definicdo formal de uma gramatica assume a forma G =
(V,T,P,S), em que V representa o conjunto das variaveis ou simbolos
nao terminais da gramatica, T o conjunto de simbolos terminais, P o
conjunto de producdes e S o simbolo/variavel de inicio. Para definir a
gramatica da linguagem BLINK (Gg;nk), poderemos subdividir as suas
caracteristicas para facilitar a sua definigao.

As duas primeiras caracteristicas da linguagem que sao definidas é
que “um programa em BLINK é uma sequéncia de instrucdes” e que
“cada instrugao termina com ponto (.)”. Assim, podemos definir a
variavel 'S”, que marca o inicio da linguagem a ser definida, e podemos
definir a variavel “I1”, para representar todas as instrucdes possiveis.
Da mesma forma, podemos definir um simbolo terminal o ponto “.”.
Relativamente as construgbes, a cabeca é a variavel de inicio da
linguagem “S”, e precisamos que S defina zero ou mais instrugdes,
para tal definiram-se as seguintes producoes:

e S — g (para uma linguagem vazia);

e S —1.S (para um conjunto recursivo de instrugdes).

Ou seja, para estes dois atributos da linguagem BLINK, Glg,nvk =
({s,1},{.},P,S), em que P representa as producdes S — €| I.S.

Existem 3 tipos de instrugdes, atribuicao de valor a variavel (A),
condicional (B) e ciclo (C). As quais definiremos separadamente:

e Iniciando pela instrucao de atribuicao de valor a variavel,
podemos definir a variavel A, que marca o inicio da definicao
desta condicdo, e ainda a variavel “E” para definir uma
expressdo. Relativamente aos simbolos terminais,
poderiamos definir igual “=" e dois pontos “:” de forma
separada, contudo, para evitar interpretacdoes erradas por
parte do analisador |éxico, como “: =", assim define-se como
terminal o simbolo “:=", ainda como terminal podemos

definir “Var” como o token da linguagem BLINK que define o

Pagina 2 de 11

nome de uma variavel. No que diz respeito as construcdes, a
cabeca é a varidavel A, e sabemos que a Unica producao
possivel € A — Var := E. Ou seja para esta condicao, a
gramatica G24g,nvk = ({AE},{:=,Var},P,A), em que P
representa a produgdo A — Var := E.

Continuando para a instrucao condicional, podemos definir
“B”, como a variavel que inicia a definicdo desta condicao,
podemos utilizar “D” como a variavel para uma condicao e
utilizdmos a variavel “S” para definir zero ou mais instrugoes,
definimos como simbolos terminais os parénteses “(” e “)”,

I/

as chavetas “{” e “}” e ainda o til “"~". No que diz respeito as
construcgdes, a cabeca é a variavel B, e sabemos que a Unica
producdo possiveléB - (D)?{S} ~ {S }. Assim, podemos
definir para esta condicgdo, a gramatica G2Bgyx =
(B,D,S}%L,{(),{}~?},P,B), em que P representa a produgao B
—-(D)?{S}~{S}.

Para finalizar, a instrugao ciclo, podemos definir C, como a
variavel iniciadora desta condicdo, podemos utilizar “"D” como
a variavel para uma condigdao, a semelhanga da instrugdo
anterior, e a variavel “S”, para definir zero ou mais
instrucdes, definimos como simbolos terminais os parénteses
“("e“)”, as chavetas “{” e “}” e ainda a arroba “"@". A Unica
producao possivel ¢, C - (D) @ { S }. Daqui, surge a
definicdo para esta condicao da gramatica, G2Cgnk =
{c,D,5},{(),{}, @}, P,C) em que P representa a producao C —
(D)@ {sS}.

Desta andlise, sabemos entdao que para as instrucoes,
tomamos como simbolo inicial a varidvel “1”, e fazemos a
unido do conjunto das varidveis e dos simbolos terminais.
Relativamente as producdes, como temos apenas uma
producdo por instrucdo, ndo precisamos das variaveis “A”,

"B” e “C”, sendo as producoes iniciadas em I. Assim, para a

Pagina 3 de 11

definicdo da parte da gramatica destinada as instrucoes,
temos que: G2 vk = {I,D,E,SL{G) L)L @,~,?,Var,:=},P, 1),
sendo que P representa as produgbesI - Var:=E | (D) ?
{S}y~{S}rlI(D)@e{s}].

Seguidamente, falta-nos definir a gramatica para as expressoes,
mantemos como variavel que inicia esta parte da gramatica “E”. Como
caracteres terminais, definimos “Var” e “Const” como tokens da
linguagem BLINK que definem o nome de uma varidvel e uma
constante, respetivamente, nao necessitando de ser definidos, temos
ainda os simbolos das quatro operagdes binarias multiplicacao “*”,
divisdo “/”, adicao “+"” e subtracdo “-”, bem como os parénteses “(" e
“)”. Relativamente as produgdes, temos as seguintes:

e E — Var (quando a expressao € o nome de uma variavel);
e E — Const (quando a expressao é uma constante);

e E — E + E (operagao binaria de adigao);

e E — E - E (operagao binaria de subtracdo);

e E — E * E (operagao binaria de multiplicagao);

e E — E/ E (operagao binaria de divisao);

e E — (E) (para forgar precedéncia entre expressoes).

Contudo, analisando estas producdes, podemos verificar que a
gramatica é ambigua, pois por exemplo para w = Var + Var /Var,
poderemos ter derivacdes diferentes, por exemplo:

o F=F+E=E+E/E=Var+E/E=Var +Var/E = Var +
Var/Var

e F=FE/E=E+E/E=Var+E/E = Var+Var/E = Var +
Var/Var

Para solucionar esta ambiguidade teremos de forcar a precedéncia
com a adicdo de variaveis. Para tal, vamos introduzir a variavel “X”
para os identificadores, ou seja, para definir as varidveis e constantes,
pois ndo é possivel a sua divisdao por qualquer operador. Vamos
introduzir também a variavel “F”, para definirmos uma expressdo que

nao pode ser separada pelos operadores das operacdes binarias, ou

Pagina 4 de 11

seja para introduzir as expressdes entre parénteses e garantir que o
gue se encontra dentro dos parénteses ndo se torne operando de um
operador fora de parénteses. Por ultimo, vamos introduzir a varidvel
“T”, para definir os termos, ou seja, expressdes que ndao podem ser
partidas pelos operadores de menor precedéncia “+” e “-V,
nomeadamente “*” e “/”. Vamos manter a variavel E, que permite
gualquer operacdo incluido aquelas que podem ser quebradas por
operadores adjacentes. Ou seja, as producdes anteriormente referidas
transformam-se em:

e X — Var (para identificar o nome de uma variavel);

X — Const (para identificar uma constante);
e F — X (quando o fator é um identificador);
e F — (E) (quando o fator € uma expressao entre parénteses);
e T — F (quando o termo é um factor);
e T — T*F (quando o termo é uma operagao de multiplicagao);
e T — T/F (quando o termo é uma operacgao de divisao);
e E — T (quando a expressao é um termo);
e E — E+T (quando a expressao é uma operacao de adicdo);
e E — E-T (quando a expressao é uma operacao de subtracdo).

Assim, podemos definir a parte da gramatica da linguagem BLINK
para as expressoes, como: G3gunk = {E, T, F, X}, {(), +,—*/
,Var,Const}, P,E), onde P sao as construgdes: X — Var | Const, F — X |
(E), T>F|T*F | T/FeE—-T | E+T | E-T.

Por ultimo, falta definir as condicdes, e vamos utilizar como variavel
que inicia esta parte da gramatica “D”, e a variavel que define as
expressdes “E”, variaveis ja introduzidas anteriormente. Definimos
ainda como variavel “Op”, para melhorar a legibilidade e manutencao
da gramatica, para se no futuro quisermos adicionar novos simbolos
terminais como >= ou <=, em que apenas necessitamos de alterar
“Op”. Como simbolos terminais, teremos os caracteres “<”, “*>", “=",

e ainda “<>" para evitar interpretacdoes erradas do analisador |éxico.

Pagina 5 de 11

Relativamente as producgdes, poderemos ter cada uma das operagodes

de comparacdo, ou seja:

e« D-EOpPE
e Op—<

e Op— >

e Op— <>

° Op—>=

Pelo que, podemos definir a parte da gramatica da linguagem

BLINK para as condigdes, como: G4z, vk = ({E,D,0p},{<,>,=<>},P,D),

onde P sao as construgdes: D - EOpEeOp —<| > | <> | =.

Conclui-se, entdo, que a gramatica final da linguagem BLINK,

GgLink, Fesulta da juncao dos componentes anteriores G1, G2, G3 e G4,

nomeadamente através da unido dos seus conjuntos. O conjunto de

variaveis final resulta da unido das variaveis introduzidas em cada

etapa (S,I,E,T,F,X,D,0p), o conjunto de terminais finais € a uniao de

todos os simbolos terminais necessarios e o conjunto de produgdes P

€ a unido de todas as producgbes. Assim, a definicdo formal da

gramatica para a linguagem de programacdo BLINK é:
GBLINK = ({S,I,E,T,F,X,D, Op}:{-::=; (l)l?l{l}l ~ @; +; _:*;/; <; >; = <>

,Var,Const}, P,S), em que P consiste nas seguintes producgoes:

S—el|l.S
I->Var:=E|(D)?{S}~{S}I(D)@e{S}
X — Var | Const

F - X | (E)

T—-FIT«FIT/F

E-TIE+TIE-T

D>EOpE

Op—-><|>|=1|<>

Esta definicdo formal da linguagem BLINK de acordo com a

descricao informal do enunciado, garante simultaneamente a estrutura

de programas como sequéncia de instrucdes terminadas por ponto, a

existéncia dos trés tipos de instrucdes, a construcao de expressoes

Pagina 6 de 11

com precedéncia correta e a definicdo de condicdes por comparagao
entre expressoes.
Para verificarmos e testarmos a gramatica, seguem-se trés
exemplos da utilizacdo da mesma:
e Programa simples (uma instrucao de atribuicao):
o w1l = Var := Const.

o Esta palavra resulta da seguinte derivagao:

Derivacao Pr(_)c_lugﬁo
utilizada

S —
1.S S—-»I.S
Var:=E .S I ->Var:=E
Var:=T.S E—->T
Var:=F .S T—>F
Var ;=X .S F—- X
Var := Const . S X — Const
Var := Const . € S—>¢
Var := Const. (resultado final)

e Duas instrucdes e precedéncia nas expressoes:
o w2: Var :=Var + Var * Const . Var := (Var + Var) / Const .

o Esta palavra resulta da seguinte derivacao:

Derivagao Prc_)c_lugéo
utilizada

S J—
I1.S S—>I1.S
Var:=E.S I—->Var:=E
Var:=E+T.S E-E+T
Var:=T+T.S E—-T
Var:=F+T.S T—>F
Var:=X+T.S F— X
Var:=Var+T.S X — Var
Var:=Var+ T*F.S T—->T*F
Var:=Var+ F*F .S T->F
Var:=Var+ X *F .S F— X
Var :=Var + Var *F . S X — Var
Var :=Var+ Var * X . S F— X
Var := Var + Var * Const . S X — Const
Var := Var + Var *Const . 1. S S—->1.S
Var := Var + Var * Const . Var := E . S I -Var:=E
Var := Var + Var * Const . Var:=T.S E-T
Var :=Var + Var *Const . Var:=T/F.S T—>T/F
Var := Var + Var * Const . Var:=F/F .S T—F
Var := Var + Var * Const . Var:=(E) /F.S F— (E)
Var :=Var+ Var *Const.Var:=(E+T)/F.S E-E+T
Var:=Var+ Var*Const.Var:=(T+T)/F.S E-T
Var :=Var + Var *Const . Var:=(F+T)/F.S T>F

Pagina 7 de 11

Var:=Var+ Var*Const.Var:=(X+T)/F.S F—- X
Var :=Var+ Var *Const.Var:=(Var+T)/F.S X — Var
Var := Var + Var * Const . Var := (Var+ F) /F.S T—>F
Var := Var + Var * Const . Var := (Var+ X)/F.S F— X
Var := Var + Var * Const . Var := (Var+ Var) /F.S X — Var
Var := Var + Var * Const . Var ;= (Var+ Var) / X.S F— X
Var := Var + Var * Const . Var := (Var + Var) / Const . S X — Const
Var := Var + Var * Const . Var := (Var + Var) / Const . € S —>¢

Var := Var + Var * Const . Var := (Var + Var) / Const .

(resultado final)

e Programa com condicional + ciclo e blocos com zero ou mais

instrucdes

o w3: (Var < Const) ? { Var

:= Var - Const .

y~{(Var>

Const) @ { Var:=Var/Const. } . }.

o Esta palavra resulta da seguinte derivagdo a esquerda:

Derivacio Producio utilizada
S _
I.S S—I.8S
(D)?{S}~{S}.S [->(D)?{S}~{S}
(EOpE)?{S}~{S}.S D — E\Op\E
(TOpE)?{S}~{S}.S E—-T
(FOpE)?{S}~{S}.S T—F
(XOpE)?{S}~{S}.S F-X
(VarOpE)?{S}~{S}.S X — Var
(Var <E)?{S}~{S}.S Op—<
(Var<T)?{S}~{S}.S E—-T
(Var<F)?{S}~{S}.S T—F
(Var<X)?{S}~{S}.S F-X
(Var<Const)? {S}~{S}.S X — Const

(Var<Const)? {1.S}~{S}.S

S — 1.8 (no bloco “then”)

(Var<Const)? {Var:=E.S}~{S}. [— Var:=E
(Var<C0nst)?{Var:ZE-T.S}~{S} S E—-E-T
(Var<Const)? {Var:=T-T.S}~{S}.S E—-T
(Var<Const)? {Var:=F-T.S}~{S}.S T—>F
(Var<Const)? {Var:=X-T.S}~{S}.S F—-X
(Var<Const)? {Var:=Var-T.S} ~{S}.S X — Var
(Var<Const)? {Var:=Var-F.S} ~{S}.S T—F
(Var<Const)? {Var:=Var-X.S}~{S}.S F—-X
(Var<Const)? { Var:=Var-Const. S} ~{S }. X — Const
(Var<Const)? {Var:=Var-Const.e } ~{S}.S | S — € (fimdo bloco
“then”)
(Var<Const)? { Var:=Var-Const. } ~{1.S}.S | S—1.S (no bloco “else”)
(Var<Const)? { Var:=Var-Const. } ~{ (D)@ { | I> (D)@ {S }
S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(EOpE | D—E\Op\E
)@{S}.S}.S

Pagina 8 de 11

(Var<Const)? { Var:=Var-Const. } ~{(TOpE |[E—T

)@ {S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(FOpE |T—F
)@ {S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(XOpE |F—-X
)@ {S}.S}.S

(Var<Const)? { Var:=Var-Const. } ~{(VarOp | X — Var
E)w{S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(Var>E | Op — >
)@{S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(Var>T |[E—>T

)@ {S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(Var>F | T—F
)@ {S}.S}.S
(Var<Const)? { Var:=Var-Const. } ~{(Var>X | F > X
)@ {S}.S}.S

(Var<Const) ? { Var := Var - Const . } ~ { (Var > X — Const
Const) @ {S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var > S —1.S (no corpo do
Const) @ {I.S}.S}.S ciclo)

(Var<Const) ? { Var := Var - Const . } ~ { (Var > [— Var:=E

Const) @ {Var:=E.S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var > E—-T
Const) @ {Var:=T.S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var > T—>T/F
Const) @ {Var:=T/F.S}.S}.S
(Var<Const) ? { Var := Var - Const. } ~ { (Var > T—F
Const) @ {Var=F/F.S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var> F—-X
Const) @ { Var:==X/F.S}.S}.S
(Var<Const) ? { Var ;= Var - Const . } ~ { (Var> X — Var
Const) @ { Var:=Var/F.S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var> F—-X
Const) @ { Var:=Var/X.S}.S}.S
(Var<Const) ? { Var ;= Var - Const . } ~ { (Var> X — Const
Const) @ { Var:=Var/Const.S}.S}.S
(Var<Const) ? { Var := Var - Const . } ~ { (Var> S — € (fim do corpo do

Const) @ { Var:=Var/Const.£}.S}.S ciclo)
(Var<Const) ? { Var := Var - Const . } ~ { (Var> S — € (fim do bloco “else”
Const) @ { Var:=Var/Const. } .€} .S apos o ponto do ciclo)

(Var<Const) ? { Var := Var - Const. } ~ { (Var > S — € (fim do programa)
Const) @ { Var:=Var/Const. } .} .€
(Var <Const) ? { Var := Var - Const . } ~ { (Var | (resultado final)
> Const) @ { Var :=Var/Const.}.}.

Para finalizar, interessa referir que se optou por permitir que a
gramatica aceite uma palavra vazia, através da producdo S — €. Esta

opcao deriva de uma sequéncia, em linguagem formal, poder ser

Pagina 9 de 11

entendida como zero ou mais ocorréncias, esta escolha mantém a
gramatica uniforme e reutilizavel, pois o mesmo simbolo “S” é usado
para representar o “conjunto de zero ou mais instrugdes” dentro dos
blocos { S }. Caso se optasse por ndao permitir w =&, ou seja se se
pretendesse impor que um programa deve conter pelo menos uma
instrucdo, a solugao seria separar explicitamente “programa” de “lista
de instrugodes”, por exemplo com um simbolo “P” para o programa: P -

1.SeS—-ellS

1.b - Na formulagdo inicial da parte das expressdes, a gramatica
considerada para “E” admitia producoes do tipo E>E+E|E—E |E *
E|E/E|(E)|Var | Const. Contudo, esta forma de definir expressodes é
ambigua, pois ndao impde qualquer regra de precedéncia ou de
associacao entre operadores. Assim, para uma mesma palavra é
possivel obter diferentes derivagdes (e, consequentemente, diferentes
arvores de derivagao). Por exemplo, para w = Var + Var/Var, existem
derivagdes que interpretam primeiro a adicao e outras que interpretam
primeiro a divisao, o que corresponde a leituras distintas da expressao.
Para contornar os problemas inerentes a esta ambiguidade (isto &,
para garantir uma interpretacdo Unica das expressodes), a solucdo
adotada consistiu em forgar explicitamente a precedéncia e a estrutura
sintatica através da introducao de variaveis adicionais e da separacao
das expressdes em niveis. Em concreto, foram introduzidas as
variaveis “X”, “F” e “T” mantendo-se “E” como variavel para a
expressao completa:
« "X” permite identificar os operandos bdasicos, limitando-os a
tokens “Var” e “"Const”;
« “F” define um fator, isto €, um identificador ou uma expressao
entre parénteses, garantindo que o conteldo de (E) ndo é

“partido” por operadores externos;

Pagina 10 de 11

o “T” define um termo, permitindo apenas multiplicacao e divisao
(x e /), assegurando que estes operadores tém precedéncia
sobre adicao e subtracao;

« “E” define a expressdao completa, permitindo apenas adicao e
subtracdo (+ e —) ao nivel superior, sempre em funcdo de
termos.

Desta forma, as producdes foram reestruturadas para:

X - Var | Const
F->X|(E)
T->F|T*xF|T/F
E-TIE+TI|E-T

Esta organizacao elimina a ambiguidade porque impede que um
operador de menor precedéncia (como +) “intercepte” uma estrutura
de maior precedéncia (como um termo com x ou /).
Consequentemente, uma palavra como Var+ Var/Var passa a ter
apenas uma derivagdo valida, correspondendo a interpretagao
esperada pela linguagem BLINK: primeiro a divisdao (nivel T) e sé
depois a adicdo (nivel E). Assim, conclui-se que a ambiguidade foi
contornada ao impor, na prépria gramatica, a precedéncia dos
operadores e o agrupamento explicito por parénteses, evitando

derivacGes alternativas para a mesma expressao.

Pagina 11 de 11

