
Página 1 de 11

UNIDADE CURRICULAR: LINGUAGENS E COMPUTAÇÃO

CÓDIGO: 21078

DOCENTE: Constantino Martins

A preencher pelo estudante

NOME: José Barão Vieira

N.º DE ESTUDANTE: 2400250

CURSO: Licenciatura em Engenharia Informática

DATA DE ENTREGA: 14/01/2026

Página 2 de 11

TRABALHO / RESOLUÇÃO:

1.a – A definição formal de uma gramática assume a forma 𝐺 =

(𝑉, 𝑇, 𝑃, 𝑆), em que V representa o conjunto das variáveis ou símbolos

não terminais da gramática, T o conjunto de símbolos terminais, P o

conjunto de produções e S o símbolo/variável de início. Para definir a

gramática da linguagem BLINK (𝐺𝐵𝐿𝐼𝑁𝐾), poderemos subdividir as suas

características para facilitar a sua definição.

As duas primeiras características da linguagem que são definidas é

que “um programa em BLINK é uma sequência de instruções” e que

“cada instrução termina com ponto (.)”. Assim, podemos definir a

variável “S”, que marca o início da linguagem a ser definida, e podemos

definir a variável “I”, para representar todas as instruções possíveis.

Da mesma forma, podemos definir um símbolo terminal o ponto “.”.

Relativamente às construções, a cabeça é a variável de início da

linguagem “S”, e precisamos que S defina zero ou mais instruções,

para tal definiram-se as seguintes produções:

• S → ε (para uma linguagem vazia);

• S → I . S (para um conjunto recursivo de instruções).

Ou seja, para estes dois atributos da linguagem BLINK, 𝐺1𝐵𝐿𝐼𝑁𝐾 =

({𝑆, 𝐼}, {. }, 𝑃, 𝑆), em que P representa as produções S → ε | I . S.

Existem 3 tipos de instruções, atribuição de valor a variável (A),

condicional (B) e ciclo (C). As quais definiremos separadamente:

• Iniciando pela instrução de atribuição de valor a variável,

podemos definir a variável A, que marca o início da definição

desta condição, e ainda a variável “E” para definir uma

expressão. Relativamente aos símbolos terminais,

poderíamos definir igual “=” e dois pontos “:” de forma

separada, contudo, para evitar interpretações erradas por

parte do analisador léxico, como “: =”, assim define-se como

terminal o símbolo “:=”, ainda como terminal podemos

definir “Var” como o token da linguagem BLINK que define o

Página 3 de 11

nome de uma variável. No que diz respeito às construções, a

cabeça é a variável A, e sabemos que a única produção

possível é A → Var := E. Ou seja para esta condição, a

gramática 𝐺2𝐴𝐵𝐿𝐼𝑁𝐾 = ({𝐴, 𝐸}, {: =, 𝑉𝑎𝑟}, 𝑃, 𝐴), em que P

representa a produção A → Var := E.

• Continuando para a instrução condicional, podemos definir

“B”, como a variável que inicia a definição desta condição,

podemos utilizar “D” como a variável para uma condição e

utilizámos a variável “S” para definir zero ou mais instruções,

definimos como símbolos terminais os parênteses “(” e “)”,

as chavetas “{” e “}” e ainda o til “~”. No que diz respeito às

construções, a cabeça é a variável B, e sabemos que a única

produção possível é B → (D) ? { S } ~ { S }. Assim, podemos

definir para esta condição, a gramática 𝐺2𝐵𝐵𝐿𝐼𝑁𝐾 =

({𝐵, 𝐷, 𝑆}, {(,), {, }, ~, ? }, 𝑃, 𝐵) , em que P representa a produção B

→ (D) ? { S } ~ { S }.

• Para finalizar, a instrução ciclo, podemos definir C, como a

variável iniciadora desta condição, podemos utilizar “D” como

a variável para uma condição, à semelhança da instrução

anterior, e a variável “S”, para definir zero ou mais

instruções, definimos como símbolos terminais os parênteses

“(” e “)”, as chavetas “{” e “}” e ainda a arroba “@”. A única

produção possível é, C → (D) @ { S }. Daqui, surge a

definição para esta condição da gramática, 𝐺2𝐶𝐵𝐿𝐼𝑁𝐾 =

({𝐶, 𝐷, 𝑆}, {(,), {, }, @}, 𝑃, 𝐶) em que P representa a produção C →

(D) @ { S }.

• Desta análise, sabemos então que para as instruções,

tomamos como símbolo inicial a variável “I”, e fazemos a

união do conjunto das variáveis e dos símbolos terminais.

Relativamente às produções, como temos apenas uma

produção por instrução, não precisamos das variáveis “A”,

”B” e “C”, sendo as produções iniciadas em I. Assim, para a

Página 4 de 11

definição da parte da gramática destinada às instruções,

temos que: 𝐺2𝐵𝐿𝐼𝑁𝐾 = ({𝐼, 𝐷, 𝐸, 𝑆}, {(,), {, }, @, ~, ? , 𝑉𝑎𝑟, : =}, 𝑃, 𝐼),

sendo que P representa as produções I → Var := E | (D) ?

{ S } ~ { S } | (D) @ { S }.

Seguidamente, falta-nos definir a gramática para as expressões,

mantemos como variável que inicia esta parte da gramática “E”. Como

caracteres terminais, definimos “Var” e “Const” como tokens da

linguagem BLINK que definem o nome de uma variável e uma

constante, respetivamente, não necessitando de ser definidos, temos

ainda os símbolos das quatro operações binárias multiplicação “*”,

divisão “/”, adição “+” e subtração “-”, bem como os parênteses “(” e

“)”. Relativamente às produções, temos as seguintes:

• E → Var (quando a expressão é o nome de uma variável);

• E → Const (quando a expressão é uma constante);

• E → E + E (operação binária de adição);

• E → E - E (operação binária de subtração);

• E → E * E (operação binária de multiplicação);

• E → E / E (operação binária de divisão);

• E → (E) (para forçar precedência entre expressões).

Contudo, analisando estas produções, podemos verificar que a

gramática é ambígua, pois por exemplo para 𝑤 = 𝑉𝑎𝑟 + 𝑉𝑎𝑟 / 𝑉𝑎𝑟,

poderemos ter derivações diferentes, por exemplo:

• 𝐸 ⟹ 𝐸 + 𝐸 ⟹ 𝐸 + 𝐸/𝐸 ⟹ 𝑉𝑎𝑟 + 𝐸/𝐸 ⟹ 𝑉𝑎𝑟 + 𝑉𝑎𝑟/𝐸 ⟹ 𝑉𝑎𝑟 +

𝑉𝑎𝑟/𝑉𝑎𝑟

• 𝐸 ⟹ 𝐸/𝐸 ⟹ 𝐸 + 𝐸/𝐸 ⟹ 𝑉𝑎𝑟 + 𝐸/𝐸 ⟹ 𝑉𝑎𝑟 + 𝑉𝑎𝑟/𝐸 ⟹ 𝑉𝑎𝑟 +

𝑉𝑎𝑟/𝑉𝑎𝑟

Para solucionar esta ambiguidade teremos de forçar a precedência

com a adição de variáveis. Para tal, vamos introduzir a variável “X”

para os identificadores, ou seja, para definir as variáveis e constantes,

pois não é possível a sua divisão por qualquer operador. Vamos

introduzir também a variável “F”, para definirmos uma expressão que

não pode ser separada pelos operadores das operações binárias, ou

Página 5 de 11

seja para introduzir as expressões entre parênteses e garantir que o

que se encontra dentro dos parênteses não se torne operando de um

operador fora de parênteses. Por último, vamos introduzir a variável

“T”, para definir os termos, ou seja, expressões que não podem ser

partidas pelos operadores de menor precedência “+” e “-“,

nomeadamente “*” e “/”. Vamos manter a variável E, que permite

qualquer operação incluído aquelas que podem ser quebradas por

operadores adjacentes. Ou seja, as produções anteriormente referidas

transformam-se em:

• X → Var (para identificar o nome de uma variável);

• X → Const (para identificar uma constante);

• F → X (quando o fator é um identificador);

• F → (E) (quando o fator é uma expressão entre parênteses);

• T → F (quando o termo é um factor);

• T → T*F (quando o termo é uma operação de multiplicação);

• T → T/F (quando o termo é uma operação de divisão);

• E → T (quando a expressão é um termo);

• E → E+T (quando a expressão é uma operação de adição);

• E → E-T (quando a expressão é uma operação de subtração).

Assim, podemos definir a parte da gramática da linguagem BLINK

para as expressões, como: 𝐺3𝐵𝐿𝐼𝑁𝐾 = ({𝐸, 𝑇, 𝐹, 𝑋}, {(,), +, −,∗,/

, 𝑉𝑎𝑟, 𝐶𝑜𝑛𝑠𝑡}, 𝑃, 𝐸), onde P são as construções: X → Var | Const, F → X |

(E), T → F | T*F | T/F e E→ T | E+T | E-T.

Por último, falta definir as condições, e vamos utilizar como variável

que inicia esta parte da gramática “D”, e a variável que define as

expressões “E”, variáveis já introduzidas anteriormente. Definimos

ainda como variável “Op”, para melhorar a legibilidade e manutenção

da gramática, para se no futuro quisermos adicionar novos símbolos

terminais como >= ou <=, em que apenas necessitamos de alterar

“Op”. Como símbolos terminais, teremos os caracteres “<”, “>”, “=”,

e ainda “<>” para evitar interpretações erradas do analisador léxico.

Página 6 de 11

Relativamente às produções, poderemos ter cada uma das operações

de comparação, ou seja:

• D → E Op E

• Op → <

• Op → >

• Op → <>

• Op → =

Pelo que, podemos definir a parte da gramática da linguagem

BLINK para as condições, como: 𝐺4𝐵𝐿𝐼𝑁𝐾 = ({𝐸, 𝐷, 𝑂𝑝}, {<, >, =, <>}, 𝑃, 𝐷),

onde P são as construções: D → E Op E e Op → < | > | <> | =.

Conclui-se, então, que a gramática final da linguagem BLINK,

𝐺𝐵𝐿𝐼𝑁𝐾, resulta da junção dos componentes anteriores 𝐺1, 𝐺2, 𝐺3 e 𝐺4,

nomeadamente através da união dos seus conjuntos. O conjunto de

variáveis final resulta da união das variáveis introduzidas em cada

etapa (S,I,E,T,F,X,D,Op), o conjunto de terminais finais é a união de

todos os símbolos terminais necessários e o conjunto de produções P

é a união de todas as produções. Assim, a definição formal da

gramática para a linguagem de programação BLINK é:

𝐺𝐵𝐿𝐼𝑁𝐾 = ({𝑆, 𝐼, 𝐸, 𝑇, 𝐹, 𝑋, 𝐷, 𝑂𝑝}, {. , : =, (,), ? , {, }, ∼, @, +, −,∗,/, <, >, =, <>

, 𝑉𝑎𝑟, 𝐶𝑜𝑛𝑠𝑡}, 𝑃, 𝑆), em que P consiste nas seguintes produções:

• S → ε ∣ I . S

• I → Var := E ∣ (D) ? { S } ∼ { S } ∣ (D) @ { S }

• X → Var ∣ Const

• F → X ∣ (E)

• T → F ∣ T ∗ F ∣ T / F

• E → T ∣ E + T ∣ E − T

• D → E Op E

• Op → < ∣ > ∣ = ∣ <>

Esta definição formal da linguagem BLINK de acordo com a

descrição informal do enunciado, garante simultaneamente a estrutura

de programas como sequência de instruções terminadas por ponto, a

existência dos três tipos de instruções, a construção de expressões

Página 7 de 11

com precedência correta e a definição de condições por comparação

entre expressões.

Para verificarmos e testarmos a gramática, seguem-se três

exemplos da utilização da mesma:

• Programa simples (uma instrução de atribuição):

o w1 = Var := Const .

o Esta palavra resulta da seguinte derivação:

Derivação
Produção

utilizada

S —

I . S S → I . S

Var := E . S I → Var := E

Var := T . S E → T

Var := F . S T → F

Var := X . S F → X

Var := Const . S X → Const

Var := Const . ε S → ε

Var := Const . (resultado final)

• Duas instruções e precedência nas expressões:

o w2: Var := Var + Var * Const . Var := (Var + Var) / Const .

o Esta palavra resulta da seguinte derivação:

Derivação
Produção

utilizada

S —

I . S S → I . S

Var := E . S I → Var := E

Var := E + T . S E → E + T

Var := T + T . S E → T

Var := F + T . S T → F

Var := X + T . S F → X

Var := Var + T . S X → Var

Var := Var + T * F . S T → T * F

Var := Var + F * F . S T → F

Var := Var + X * F . S F → X

Var := Var + Var * F . S X → Var

Var := Var + Var * X . S F → X

Var := Var + Var * Const . S X → Const

Var := Var + Var * Const . I . S S → I . S

Var := Var + Var * Const . Var := E . S I → Var := E

Var := Var + Var * Const . Var := T . S E → T

Var := Var + Var * Const . Var := T / F . S T → T / F

Var := Var + Var * Const . Var := F / F . S T → F

Var := Var + Var * Const . Var := (E) / F . S F → (E)

Var := Var + Var * Const . Var := (E + T) / F . S E → E + T

Var := Var + Var * Const . Var := (T + T) / F . S E → T

Var := Var + Var * Const . Var := (F + T) / F . S T → F

Página 8 de 11

Var := Var + Var * Const . Var := (X + T) / F . S F → X

Var := Var + Var * Const . Var := (Var + T) / F . S X → Var

Var := Var + Var * Const . Var := (Var + F) / F . S T → F

Var := Var + Var * Const . Var := (Var + X) / F . S F → X

Var := Var + Var * Const . Var := (Var + Var) / F . S X → Var

Var := Var + Var * Const . Var := (Var + Var) / X . S F → X

Var := Var + Var * Const . Var := (Var + Var) / Const . S X → Const

Var := Var + Var * Const . Var := (Var + Var) / Const . ε S → ε

Var := Var + Var * Const . Var := (Var + Var) / Const . (resultado final)

• Programa com condicional + ciclo e blocos com zero ou mais

instruções

o w3: (Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / Const . } . } .

o Esta palavra resulta da seguinte derivação à esquerda:

Derivação Produção utilizada

S —

I . S S → I . S

(D) ? { S } ~ { S } . S I → (D) ? { S } ~ { S }

(E Op E) ? { S } ~ { S } . S D → E\ Op\ E

(T Op E) ? { S } ~ { S } . S E → T

(F Op E) ? { S } ~ { S } . S T → F

(X Op E) ? { S } ~ { S } . S F → X

(Var Op E) ? { S } ~ { S } . S X → Var

(Var < E) ? { S } ~ { S } . S Op → <

(Var < T) ? { S } ~ { S } . S E → T

(Var < F) ? { S } ~ { S } . S T → F

(Var < X) ? { S } ~ { S } . S F → X

(Var < Const) ? { S } ~ { S } . S X → Const

(Var < Const) ? { I . S } ~ { S } . S S → I . S (no bloco “then”)

(Var < Const) ? { Var := E . S } ~ { S } . S I → Var := E

(Var < Const) ? { Var := E - T . S } ~ { S } . S E → E - T

(Var < Const) ? { Var := T - T . S } ~ { S } . S E → T

(Var < Const) ? { Var := F - T . S } ~ { S } . S T → F

(Var < Const) ? { Var := X - T . S } ~ { S } . S F → X

(Var < Const) ? { Var := Var - T . S } ~ { S } . S X → Var

(Var < Const) ? { Var := Var - F . S } ~ { S } . S T → F

(Var < Const) ? { Var := Var - X . S } ~ { S } . S F → X

(Var < Const) ? { Var := Var - Const . S } ~ { S } . S X → Const

(Var < Const) ? { Var := Var - Const . ε } ~ { S } . S S → ε (fim do bloco

“then”)

(Var < Const) ? { Var := Var - Const . } ~ { I . S } . S S → I . S (no bloco “else”)

(Var < Const) ? { Var := Var - Const . } ~ { (D) @ {

S } . S } . S

I → (D) @ { S }

(Var < Const) ? { Var := Var - Const . } ~ { (E Op E

) @ { S } . S } . S

D → E\ Op\ E

Página 9 de 11

(Var < Const) ? { Var := Var - Const . } ~ { (T Op E

) @ { S } . S } . S

E → T

(Var < Const) ? { Var := Var - Const . } ~ { (F Op E

) @ { S } . S } . S

T → F

(Var < Const) ? { Var := Var - Const . } ~ { (X Op E

) @ { S } . S } . S

F → X

(Var < Const) ? { Var := Var - Const . } ~ { (Var Op

E) @ { S } . S } . S

X → Var

(Var < Const) ? { Var := Var - Const . } ~ { (Var > E

) @ { S } . S } . S

Op → >

(Var < Const) ? { Var := Var - Const . } ~ { (Var > T

) @ { S } . S } . S

E → T

(Var < Const) ? { Var := Var - Const . } ~ { (Var > F

) @ { S } . S } . S

T → F

(Var < Const) ? { Var := Var - Const . } ~ { (Var > X

) @ { S } . S } . S

F → X

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { S } . S } . S

X → Const

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { I . S } . S } . S

S → I . S (no corpo do

ciclo)

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := E . S } . S } . S

I → Var := E

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := T . S } . S } . S

E → T

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := T / F . S } . S } . S

T → T / F

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := F / F . S } . S } . S

T → F

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := X / F . S } . S } . S

F → X

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / F . S } . S } . S

X → Var

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / X . S } . S } . S

F → X

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / Const . S } . S } . S

X → Const

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / Const . ε } . S } . S

S → ε (fim do corpo do

ciclo)

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / Const . } . ε } . S

S → ε (fim do bloco “else”

após o ponto do ciclo)

(Var < Const) ? { Var := Var - Const . } ~ { (Var >

Const) @ { Var := Var / Const . } . } . ε

S → ε (fim do programa)

 (Var < Const) ? { Var := Var - Const . } ~ { (Var

> Const) @ { Var := Var / Const . } . } .

(resultado final)

Para finalizar, interessa referir que se optou por permitir que a

gramática aceite uma palavra vazia, através da produção S → ε. Esta

opção deriva de uma sequência, em linguagem formal, poder ser

Página 10 de 11

entendida como zero ou mais ocorrências, esta escolha mantém a

gramática uniforme e reutilizável, pois o mesmo símbolo “S” é usado

para representar o “conjunto de zero ou mais instruções” dentro dos

blocos { S }. Caso se optasse por não permitir 𝑤 = 𝜀, ou seja se se

pretendesse impor que um programa deve conter pelo menos uma

instrução, a solução seria separar explicitamente “programa” de “lista

de instruções”, por exemplo com um símbolo “P” para o programa: 𝑃 →

𝐼. 𝑆 e 𝑆 → 𝜀 ∣ 𝐼. 𝑆

1.b – Na formulação inicial da parte das expressões, a gramática

considerada para “E” admitia produções do tipo 𝐸 → 𝐸 + 𝐸 ∣ 𝐸 − 𝐸 ∣ 𝐸 ∗

𝐸 ∣ 𝐸/𝐸 ∣ (𝐸) ∣ 𝑉𝑎𝑟 ∣ 𝐶𝑜𝑛𝑠𝑡. Contudo, esta forma de definir expressões é

ambígua, pois não impõe qualquer regra de precedência ou de

associação entre operadores. Assim, para uma mesma palavra é

possível obter diferentes derivações (e, consequentemente, diferentes

árvores de derivação). Por exemplo, para 𝑤 = 𝑉𝑎𝑟 + 𝑉𝑎𝑟/𝑉𝑎𝑟, existem

derivações que interpretam primeiro a adição e outras que interpretam

primeiro a divisão, o que corresponde a leituras distintas da expressão.

Para contornar os problemas inerentes a esta ambiguidade (isto é,

para garantir uma interpretação única das expressões), a solução

adotada consistiu em forçar explicitamente a precedência e a estrutura

sintática através da introdução de variáveis adicionais e da separação

das expressões em níveis. Em concreto, foram introduzidas as

variáveis “X”, “F” e “T” mantendo-se “E” como variável para a

expressão completa:

• “X” permite identificar os operandos básicos, limitando-os a

tokens “Var” e “Const”;

• “F” define um fator, isto é, um identificador ou uma expressão

entre parênteses, garantindo que o conteúdo de (𝐸) não é

“partido” por operadores externos;

Página 11 de 11

• “T” define um termo, permitindo apenas multiplicação e divisão

(∗ e /), assegurando que estes operadores têm precedência

sobre adição e subtração;

• “E” define a expressão completa, permitindo apenas adição e

subtração (+ e −) ao nível superior, sempre em função de

termos.

Desta forma, as produções foram reestruturadas para:

𝑋 → 𝑉𝑎𝑟 ∣ 𝐶𝑜𝑛𝑠𝑡

𝐹 → 𝑋 ∣ (𝐸)

𝑇 → 𝐹 ∣ 𝑇 ∗ 𝐹 ∣ 𝑇/𝐹

𝐸 → 𝑇 ∣ 𝐸 + 𝑇 ∣ 𝐸 − 𝑇

Esta organização elimina a ambiguidade porque impede que um

operador de menor precedência (como +) “intercepte” uma estrutura

de maior precedência (como um termo com ∗ ou /).

Consequentemente, uma palavra como 𝑉𝑎𝑟 + 𝑉𝑎𝑟/𝑉𝑎𝑟 passa a ter

apenas uma derivação válida, correspondendo à interpretação

esperada pela linguagem BLINK: primeiro a divisão (nível 𝑇) e só

depois a adição (nível 𝐸). Assim, conclui-se que a ambiguidade foi

contornada ao impor, na própria gramática, a precedência dos

operadores e o agrupamento explícito por parênteses, evitando

derivações alternativas para a mesma expressão.

