ARQUITECTURA DE COMPUTADORES | 21010

Enunciado / resolução época normal 2023/24

Grupo I (3 / 5 valores)

1. Considere uma função lógica F(A,B,C,D), em que A é a variável de maior peso e D a variável de menor peso. A distribuição de mintermos (m) e indiferenças (md) da função F(A,B,C,D) é a seguinte:

$$\sum m(0,2,7,9,13) + \sum md(3,4,10,11)$$

AB\CD	00	01	11	10
00	1	0	X	1
01	X	0	1	0
11	0	1	0	0
10	0	1	X	X

1. a) [1.5] Construa o mapa de Karnaugh e simplifique a função de modo a obter uma soma de produtos.

AB\CD	00	01	11	10
00	1	0	X	1
01	X	0	1	0
11	0	1	0	0
10	0	1	X	X

 $\overline{A}\overline{B}\overline{D} + A\overline{C}D + \overline{A}CD$

1. b) [0.5, apenas exame] Duplique o mapa obtido na alínea anterior e simplifique a expressão de forma a obter um produto de somas.

AB\CD	00	01	11	10
00	1	0	X	1
01	X	0	1	0
11	0	1	0	0
10	0	1	X	X
<u> </u>	- > .			

$$(\overline{A} + \overline{C})(\overline{B} + D)(\overline{A} + D)(A + C + \overline{D})$$

NOTA: Na sua resolução marque os laços utilizados no mapa, e faça corresponder cada termo da função resultante com o laço que lhe dá origem. Caso contrário a resposta não se considera justificada.

- **2.** Efetue as seguintes conversões entre bases numéricas:
- **2. a) [0.5]** Represente o número A01h em base 8.

Hexadecimal: A01h

Binário: 1010.0000.0001b

Binário: 101.000.000.001b

Base 8: 5001₈

2. b) [0.5, apenas exame] Represente o número 3524₈ em base 10.

Base 8: 3524

Fórmula: $3*8^3+5*8^2+2*8+4 = (24+5)*64+20 = 1876$

- **3.** Efetue as seguintes conversões:
- **3.** a) [1] Represente o número -17 em binário com 8 bits, utilizando a técnica de complemento para 2.

Conversão para binário: $17 = 16 + 1 = 2^4 + 1 = 10001b$

Binário de 8 bits: 00010001b

Complemento: 11101110b

Mais 1: 111011111b

3. b) [1, apenas exame] Considere a seguinte norma, baseada na recomendação IEEE-754, mas adaptada para 16 bits: S=1, E=5, F=10; Número=(-1)^S * 1,F * 2^(E-15). Represente em notação decimal, o número: 0011100011100000

Número: 0011100011100000S=0, E=01110, F=0011100000 Número = $(-1)^0*1,00111*2^(14-15)$ Número = 0,100111b = 1/2+1/16+1/32+1/64 = 0.609375

Grupo II (3 / 5 valores)

Considere a seguinte função lógica de três variáveis F(A,B,C):

$$F(A,B,C) = \overline{\overline{B} + \overline{C + A}} + \overline{\overline{C} + \overline{AB}} + \overline{\overline{A} + \overline{C}}$$

1. [1.5] Simplifique algebricamente a função F.

$$\overline{B} + \overline{C + A} + \overline{\overline{C} + \overline{AB}} + \overline{\overline{A} + \overline{\overline{C}}} =$$

$$\overline{B}.\overline{C + A} + \overline{C}.\overline{AB} + \overline{A}.\overline{C} =$$

$$B(C + A) + CAB + AC =$$

$$AB + BC + AC$$

2. [1, apenas exame] Indique uma expressão lógica que implemente a função *F* utilizando apenas portas NAND, desenhando o circuito correspondente.

$$AB + BC + AC =$$

$$\overline{AB + BC + AC} =$$

$$\overline{AB, \overline{BC, \overline{AC}}}$$

Desenho do circuito, com as ligações:

NAND(NAND(A,B), NAND(B,C), NAND(A,C))

3. [1, apenas exame] Indique uma expressão lógica que implemente a função *F* utilizando apenas portas NOR, desenhando o circuito correspondente.

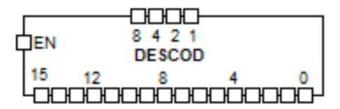
$$AB + BC + AC =$$

$$A(B + C) + BC =$$

$$(A + BC)(B + C + BC) =$$

$$(A + BC)(B + C) =$$

$$(A + B)(A + C)(B + C) =$$


$$\overline{(A + B)(A + C)(B + C)} =$$

$$\overline{(A + B)(A + C)(B + C)} =$$

Desenho do circuito, com as ligações:

NOR(NOR(A,B), NOR(B,C), NOR(A,C))

4. [1.5] Implemente a função recorrendo a um descodificador de 4 bits.

Desenho do circuito, com as ligações:

A=4, B=2, C=1 (ou inverso), ligando 8 à terra, EN=1

AB + BC + AC – extrair mintermos de CNF (poderia ser feito o mapa de Karnaugh)

AB=4+2=6, (C indiferente 6+1=7),

BC=2+1=3 (A indiferente 3+4=7),

AC=4+1=5 (B indiferente 5+2=7)

OR(3,5,6,7)

Nas resoluções em que a função é 1 devido má visualização da fórmula:

Entradas: A=4, B=2, C=1, 8 ligado à terra, EN=1

Saídas: F=OR(0,...,7)

Grupo III (3 / 5 valores)

Considere um sistema sequencial síncrono, com uma entrada e uma saída. A saída deverá ser 0 até que a entrada tenha ocorrido a sequência 110 ou 111. Após esse momento a saída deverá ser 1 até que a entrada ocorra a sequência 000.

Exemplo de funcionamento:

Entrada	1	0	0	1	1	0	0	1	0	0	0	0	1
Saída	0	0	0	0	0	1	1	1	1	1	0	0	0

A sequência 110 ocorreu uma vez, e nessa altura a saída passou a 1. A saída permaneceu com o valor 1 até que ocorreu a sequência 000.

1. [2] Determine o diagrama de estados.

```
Estados (máquina de Moore):
```

S0: nada detetado, saída a 0 --- 0>S0, 1>S1

S1: 1 detetado, saída a 0 --- 0>S0, 1>S2

S2: 11 detetado, saída a 0 --- x>S3

S3: 11x detetado, saída a 1 --- 0>S4, 1>S3

S4: 0 detetado, saída a 1 --- 0>S5, 1>S3

S5: 00 detetado, saída a 1 --- 0>S0, 1>S3

Estados (máquina de Mealy):

S0: nada detetado --- 0/0>S0, 1/0>S1

S1: 1 detetado --- 0/0>S0, 1/0>S2

S2: 11 detetado --- x/1>S3

S3: 11x detetado --- 0/1>S4, 1/1>S3

S4: 0 detetado --- 0/1>S5, 1/1>S3

S5: 00 detetado --- 0/0>S0, 1/1>S3

2. [1] [e-fólio Global apenas] Reproduza o exemplo de funcionamento para os valores da entrada, com o diagrama de estados da alínea 1. Assuma que o estado inicial é 0, e determine a saída e o número do estado a cada instante.

Entrada	1	0	0	1	1	0	0	1	0	0	0	0	1
Saída	0	0	0	0	0	1	1	1	1	1	0	0	0
Estado	S1	S0	S0	S1	S2	S3	S4	S3	S4	S5	S0	S0	S1

2. [2, apenas exame] Construa a tabela de transição de estados correspondente ao diagrama de estados.

Com 6 estados é preciso 3 variáveis de estado:

Com			preci	30				estaut
E	s2	s1	s0		S	s2	s1	s0
0	0	0	0		0	0	0	0
0	0	0	1		0	0	0	0
0	0	1	0		0	0	1	1
0	0	1	1		1	1	0	0
0	1	0	0		1	1	0	1
0	1	0	1		1	0	0	0
0	1	1	0		X	X	X	X
0	1	1	1		X	X	X	X
1	0	0	0		0	0	0	1
1	0	0	1		0	0	1	0
1	0	1	0		0	0	1	1
1	0	1	1		1	0	1	1
1	1	0	0		1	0	1	1
1	1	0	1		1	0	1	1
1	1	1	0		X	X	X	X
1	1	1	1		X	X	X	X

3. [1, apenas exame] Simplifique as variáveis de saída.

E,s2\s1,s0	00	01	11	10
00	0	0	1	0
01	1	1	X	X
11	1	1	X	X
10	0	0	1	0

 $s_2\overline{s_1} + s_1s_0$

Grupo IV (3 / 5 valores)

- **1. [2, apenas exame]** Indique as instruções, em assembly do P3, que implementam as seguintes funcionalidades:
 - 1. a) Escreva em assembly do P3 uma instrução que: Coloca na posição de memória em "W" o conteúdo de R2
 - 1. b) Escreva em assembly do P3 uma instrução que: Coloca em R1 o conteúdo da posição de memória em R2
 - 1. c) Escreva em assembly do P3 uma instrução que: Salto condicional relativo para "label", se a última operação aritmética não gerou transporte
 - 1. d) Escreva em assembly do P3 uma instrução que: Subtrai R2 a R1
 - a) MOV M[W], R2
 - b) MOV R1, M[R2]
 - c) JMP.NC label
 - d) CMP R1, R2
- **2. [3]** Elabore uma sub-rotina no assembly do P3 que receba no registo R1 o valor de \mathbf{n} , no registo R2 o valor de \mathbf{r} , e retorne no registo R3 o resultado da função EP1A3:

```
Function EP1A3(N, R)
    res = 1
    For i = N - R + 1 To N
        res = res * i
    Next
    EP1A3 = res
End Function
```

O valor **n** e **r** é um inteiro positivo, tal como todas as variáveis na função. Caso o resultado não possa ser armazenado num registo, retorne FFFFh.

Exemplo:

R1 = 5

R2 = 3

Pretende-se que efetue o produto desde 5-3+1=3 até 5, ou seja, 3*4*5. R3 deverá ficar com o valor 60. Caso este valor não pudesse ser representado num só registo, R3 ficaria com o valor FFFFh.

EP1A3: MOV R3, 1; R3 fica logo com o resultado

MOV R4, R1 ; R4 a variável iteradora i=N

SUB R4, R2 ; i=N-R

Ciclo: INC R4 ; próximo elemento a iterar

PUSH R4 ; guardar para recuperar a variável

MUL R4, R3 ; produto, se bem sucedido R4=0

CMP R4, R0 ; teste se R4 é vazio

JMP.NZ Falha ; falha, valor demasiado elevado

POP R4 ; recuperar i

CMP R4, R1 ; ver se i já chegou a N

JMP.NZ Ciclo ; ainda não, continua

Fim: RET; retorna, está o resultado em R3 conforme solicitado

Falha: MOV R3, FFFFh ; valor de erro a retornar

JMP Fim

; Nota: em MUL O bit de estado Z é atualizado de acordo com o resultado, os restantes ficam a 0. O overflow tem de ser verificado no contexto do exercício, do número não caber num só registo, pelo que o primeiro operando é distinto de 0.

Anexo

Primeiras potências de 2:

1	2	4	8	16	32	64	128
256	512	1024	2048	4096	8192	16384	32768

Conjunto de Instruções do Processador P3:

Aritmétic as	Lógic as	Deslocamen to	Control o de Fluxo	Transferên cia de Dados	Divers as
NEG	COM	SHR	BR	MOV	NOP
INC	AND	SHL	BR.cond	MVBH	ENI
DEC	OR	SHRA	JMP	MVBL	DSI
ADD	XOR	SHLA	JMP.con d	XCH	STC
ADDC	TEST	ROR	CALL	PUSH	CLC
SUB		ROL	CALL.co nd	POP	CMC
SUBB		RORC	RET		
CMP		ROLC	RETN		
MUL			RTI		
DIV			INT		

Conjunto de Condições de Salto:

Condição	Mnemónica
Zero	Z
Não Zero	NZ
Transporte (Carry)	С
Não Transporte	NC
Negativo	N
Não Negativo	NN
Excesso (Overflow)	0
Não Excesso	NO
Positivo	Р
Não Positivo	NP
Interrupção	I
Não Interrupção	NI