
1.a) Mapa de Karnaugh e simplificação da função F(A,B,C,D)

A função dada é:

F(A,B,C,D)=∑m(0,4,9,12,15)+∑md(2,5,10,13)

Passos:

1. Construir o mapa de Karnaugh:

Primeiro, cria-se o mapa de Karnaugh de 4 variáveis (A, B, C, D). Como A é a variável de maior
peso, seguimos a ordem de A, B nas linhas e C, D nas colunas.

Mapa de Karnaugh (4 variáveis):

AB\CD 00 01 11 10

00 m(0) m(1) m(3) m(2)

01 m(4) m(5) m(7) m(6)

11 m(12) m(13) m(15) m(14)

10 m(8) m(9) m(11) m(10)

Coloca-se a informação fornecida:

• Mintermos (1): 0, 3, 9, 12, 15
• Indiferenças (X): 2, 5, 10, 13

• Restante (0): Todos os outros valores

O mapa fica:

AB\CD 00 01 11 10

00 1 0 0 X

01 1 X 0 0

11 1 X 1 0

10 0 1 0 X

2. Simplificação (Soma de Produtos):

A partir do mapa de Karnaugh, identificam-se os laços (grupos de 1s) para simplificar a

expressão:

AB\CD 00 01 11 10

00 1 0 0 X

01 1 X 0 0

11 1 X 1 0

10 0 1 0 X

• Grupo de 1s em m(0) e m(4): /A /C /D
• Grupo de 1s em m(4) e m(12) e X em m(5) e m(13): B /C

• Grupo de 1s em m(9) e X em m(13): A /C D
• Grupo de 1s em m(15) e X em m(13): A B D

A expressão simplificada é:

F(A,B,C,D)= /A /C /D + B /C + A /C D + A B D

1.b) Simplificação da função para Produto de Somas

Para simplificar a expressão em produto de somas, duplica-se o mapa de Karnaugh e segue-

se o processo de simplificação, laçando-se os 0´s. Observam-se os laços em termos de
produtos de somas. A expressão simplificada em produto de somas através do Mapa de

Karnaugh:

AB\CD 00 01 11 10

00 m(0) m(1) m(3) m(2)

01 m(4) m(5) m(7) m(6)

11 m(12) m(13) m(15) m(14)

10 m(8) m(9) m(11) m(10)

AB\CD 00 01 11 10

00 1 0 0 X

01 1 X 0 0

11 1 X 1 0

10 0 1 0 X

• Grupo de 0s em m(8) e X em m(10): /A + B + D

• Grupo de 0s em m(1), m(3), m(7) e X em m(5): A + /D
• Grupo de 0s em m(6), m(14) e X em m(2) e m(10): /C + D

• Grupo de 0s em m(11) e X em m(10): /A +B +/C

 F (A,B,C,D) = (/A + B + D) (A + /D) (/C + D) (/A +B +/C)

2.a) Conversão de 7A4h em base 7

O número é 7A4h, que está em hexadecimal. Converte-se esse número para base 7.

1. Converter de hexadecimal para binário:

o 7 = 0111
o A = 1010

o 4 = 0100

Assim, 7A4h em binário é: 0111 1010 01002

2. Converter de binário para decimal (base 10):

(0x211)+(1x210)+(1x29)+(1x28)+(1x27)+(0x26)+(1x25)+(0x24)+(0x23)+(1x22)+(0x21)+(0x20)

=0+1024+512+256+128+0+32+0+0+4+0+0 = 1956

3. Converter de decimal (base 10) para base 7

Converter 1956₁₀ para base 7 usando divisões sucessivas:

Divisões:

1956 ÷ 7 = 279, resto 3

279 ÷ 7 = 39, resto 6

39 ÷ 7 = 5, resto 4

5 ÷ 7 = 0, resto 5

Lendo os restos de baixo para cima = 54637

Logo, 7A4h em base 7 é 54637

Em alternativa pode-se converte de hexadecimal para decimal e depois para base

septenária, sem necessidade de converter em binário.

1. Hexadecimal para Decimal

7A4h = 7×16² + 10×16¹ + 4×16⁰

= 7×256 + 10×16 + 4

= 1792 + 160 + 4 = 1956₁₀

Seguir o passo 3 anterior.

2.b) Conversão de 65478 para base 10

Para converter o número 65478 para base 10, utilizamos a fórmula de conversão de bases:

65478 = 6 x 83 + 5 x 82 + 4 x 81 + 7 x 80

Calcula-se cada termo:

I. 6 x 83 =6 x 512 = 3072

II. 5 x 82 =5 x 64 = 320
III. 4 x 81 =4 x 8 = 32

IV. 7 x 80 =7 x 1 = 7

Somam-se os resultados:

3072 + 320 + 32 + 7 = 3431

O número 65478 em base 10 é 343110

3.a) Representação de -215 em binário com 12 bits (complemento de 2)

Para representar o número -215 em binário com 12 bits usando o complemento de 2:

1. Representação de 215 em binário: Converte-se o número positivo 215 para binário:

215=110101112

Como se usa 12 bits, adiciona-se quatro zeros à esquerda:

215=0000110101112

2. Inverter os bits (complemento de 1): Inverte-se todos os bits da representação
binária:

0000110101112 → 1111001010002

3. Somar 1 ao complemento de 1: Adicionar 1 ao número obtido:

1111001010002 + 1 = 1111001010012

A representação de -215 em binário com 12 bits (complemento de 2) é 1111001010012

3.b) Represente o número 0,7812510 na base 20. Apresente os cálculos.

Para converter o número decimal 0,78125 para a base 20, seguimos um processo similar ao

de conversão para outras bases.

Passo 1: Multiplicar a parte decimal por 20

A parte decimal do número é 0,7812510. Vamos multiplicar esse valor por 20 e observar a parte
inteira e a parte decimal do resultado.

0,78125 × 20 = 15,625

A parte inteira é 15, e a parte decimal é 0,625.

Passo 2: Obter o primeiro dígito na base 20

A parte inteira 15 corresponde ao primeiro dígito na base 20. Para representar esse número na
base 20, usamos os seguintes símbolos:

• 0 a 9 representam os mesmos valores que na base 10.

• A representa 10,
• B representa 11,

• C representa 12,
• D representa 13,

• E representa 14,
• F representa 15,

• G representa 16,
• H representa 17,

• I representa 18.

Portanto, o primeiro dígito é F.

Passo 3: Continuar com a parte decimal

Com a parte decimal 0,625 repetimos o processo:

0,625 × 20 = 12,5

A parte inteira agora é 12, e a parte decimal é 5. O número 12 na base 20 é representado pela
letra C.

Passo 4: Resultado final

Com a parte decimal 0,5 repetimos o processo:

0,5 × 20 = 10

O número 10 na base 20 é representado pela letra A.

Como a parte decimal agora é zero, paramos a conversão.

A representação de 0,78125 na base 20 é:

0,7812510=0,FCA20

Grupo II (5 valores)

Dada a função lógica: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 + 𝐵𝐶)(𝐴 + 𝐵𝐷) + (𝐵𝐶 + 𝐴𝐷)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4. Simplificação algébrica da função

Expandir o produto (A+/BC)(/A+BD)

Usar a distributiva:

=A/A + A⋅BD + /BC⋅/A + /BC⋅BD

Uma variável e seu complemento não podem ser verdadeiros ao mesmo tempo: A/A=0

=0 + A BD + /BC /A + /BC BD

Na última parcela, /B⋅B=0, logo:

/BC BD=0

Portanto:

=ABD + /BC /A

Passo 2: Analisar o segundo termo:

/(B/C+A/D)

Aplicando a Lei De Morgan:

=/(B/C)⋅/(A/D) = (/B + C) (/A + D)

Passo 3: A função fica:

F = ABD + /BC /A + (/B + C) (/A + D)

Passo 4: Expandir (/B + C) (/A + D)

=/B/ A + /BD + C/A + CD

Passo 5: Substituir e reescrever F:

F = ABD + /BC /A + /B/ A + /BD + C/A + CD

Passo 6: Agrupar termos semelhantes para simplificar

Notar que BC /A está contido em C/A logo:

BC /A + C/A = C/A considerando que C/A + BC /A = C/A (1 + /B) = C/A

Passo 7:

F = ABD + C/A + /B/A + /BD + CD

Passo 8: Procurar termos que podem ser combinados

1. ABD e /BD:

Podemos escrever D(AB + /B)

Note que:

AB + /B = /B + AB

Utilizando o teorema do complemento:

/B + AB = (/B + A)(/B + B) = (/B + A)⋅1= /B + A

Portanto:

D(AB + /B) = D(/B + A)

Passo 10: Substituir em F:

F = C/A + /B/A + D(/B + A) + CD

Passo 11: Agrupar C/A + /B/A:

/A (C+/B)

Passo 12: Escrever F final simplificada:

F=/A(C + /B)+D(/B+ A) + CD

5 Implementação com Portas NAND

F=/A(C + /B)+D(/B+ A) + CD

Equivalências:

NOT(A) = /A=NAND(A,A)

AND(A, B) = A⋅B = / NAND(A,B) = NAND(NAND(A,B),NAND(A,B))

OR(A, B) = A+B = /(/A⋅B) =NAND(NAND(A,A),NAND(B,B))

Termo 1: /A(C + /B)

/A = NAND(A,A)

/B = NAND(B,B)

C+ /B =NAND(NAND(C,C),NAND(B,B))

Termo 2: D(/B+ A)

/B = NAND(B,B)

/B +A=NAND(NAND(B,B),NAND(A,A))

Termo 3: CD

C D = NAND(C,D)

6. Implementação com Portas NOR

NOR(X,Y)= /(X+Y) , a porta NOR é a negação da porta OR

/X = NOR(X,X) , NOT usando NOR

X+Y= / (NOR(X,Y)) = NOT(NOR(X,Y)) = NOR(NOR(X,Y),NOR(X,Y)) , OR usando NOR

X⋅Y= /(/X + /Y) = NOR(/X,/Y) = NOR(NOR(X,X),NOR(Y,Y)) , AND usando NOR (lei de De Morgan)

F= /A(C + /B)+D(/B+ A) + CD

Termo 1: /A (C + /B)

/A = NOR(A,A)

/B = NOR(B,B)

C + /B = OR(C, /B) = NOR(NOR(C, /B),NOR(C, /B))

Termo 2: D(/B+ A)

/B = NOR(B,B)

/B +A = NOR(NOR(/B ,A),NOR(/B ,A))

Termo 3: CD

CD = NOR(NOR(C,C),NOR(D,D))

7. Implementação com Multiplexer

Para implementar F(A, B, C, D) usando um multiplexer de 2 variáveis de seleção:

1. Escolha das variáveis de seleção:
o S2 = A, S1 = B

2. Tabela verdade para F(A, B, C):

A B F(C)

0 0

 (0 + /0C)(/0 + 0D)+ /(0/C + 0/D)=

 (1) (1) + /(0+0) =
 1+1 =

 1

0 1

 (0 + /1C)+(/0+ 1D)+/(1/C + 0/D)=

 (0+0C)(1+D)+/(/C +)=
 (0)(1) + //C =

 0+ C=
 C

1 0

 (1 + /0C)+(/1+ 0D)+/(0/C + 1/D)=
 (1)(0)+/(0+/D)=

 0+D=
 D

1 1

 (1 + /1C)+(/1+ 1D)+/(1/C + 1/D)=

 (1+0)(0+D)+/(/C+/D)=
 1 D + /(/C+/D)=

 D + CD=
 D(1+C)=

 D

𝐹(𝐴,𝐵,𝐶,𝐷) = (𝐴+/𝐵𝐶)(/𝐴+𝐵𝐷)+/(B/C+A/D)

3. Entradas do Multiplexer (I0, I1, I2, I3):

• I0 = 1 (caso A=0, B=0)

• I1 = C (caso A=0, B=1)
• I2 = D (caso A=1, B=0)

• I3 = D (caso A=1, B=1)

4. Configuração do Multiplexer:

Conectar A e B às entradas de seleção S2 e S1, respetivamente, e conectar os valores
I0, I1, I2, I3 às entradas de dados do multiplexador.

Expressão final baseada no multiplexer:

 F(A,B,C) = MUX (A,B, I0=1, I1=C, I2=D, I3=D)

8. Diagrama de Estados

Máquina de Mealy com 4 Estados para Deteção de "1101"

1. Definição dos estados:
o S0: Estado inicial (nenhum bit da sequência).Primeiro 1 detetado

o S1: 1 detetado

o S2: 0 detetado
o S3: Sequência "1101" detetada

2. Transições de estados:
o De S0:

▪ Entrada 1=0: Permanece em S0
▪ Entrada 1=1: Transita para S1

o De S1:
▪ Entrada 1=0: Transita para S0

▪ Entrada 1=1: Transita para S2

o De S2:
▪ Entrada 1=0: Transita para S3

▪ Entrada 1=1: Permanece em S2 (múltiplos 1)
o De S3:

▪ Entrada 1=0: Transita para S0

▪ Entrada 1=1: Transita para S1 com Saída Z=E2

3. Saída Z:
o Z = Entrada 2 somente no estado S3 para S1 com Entrada 1 = 1 (E1=1)

o Z = 0 nos demais estados

Mapa de atribuição de estados

Um mapa de estados normalmente mostra, para cada combinação de entradas, qual será o próximo estado da

máquina, com base no estado atual e nos valores de entrada.

Com 4 estados, precisamos de 2 bits para codificá-los (22 =4).

X1

X0
0 1

0 S0 S1

1 S2 S3

9. Tabela de transição de estados

 Atual Entradas Seguinte Estado

Seguinte

Saída

 X1 X0 E1 X1 X0 Z

S0 0 0 0 0 0 S0 0

S0 0 0 1 0 1 S1 0

S1 0 1 0 0 0 S0 0

S1 0 1 1 1 0 S2 0

S2 1 0 0 1 1 S3 0

S2 1 0 1 1 0 S2 0

S3 1 1 1 0 1 S1 Z= E2

S3 1 1 0 0 0 S0 0

10. Simplificação da variável de saída

Condição para Z = E2

• S3 = Q1 Q0 = 11

• E1=1

A saída Z depende de:

• Estado atual Q1=1, Q0=1
• Entrada E1 = 1

• A saída Z = E2 apenas nessa condição

Expressão booleana para Z:

• Z=Q1⋅Q0⋅E1⋅E2

Q1 e Q0 são os bits do estado atual.

Z=E2 apenas quando a Máquina de Estados Finitos está em S3 (Q1=1,Q0=1) e E1=1.

Caso contrário, Z=0.

11.a) [0,5] Coloca em R1 os seus bits deslocados uma unidade para a esquerda, sendo
mantido o bit mais significativo

SHLA R1, 1

SHLA

Formato: SHLA op, const Flags: ZCNO
Acão: shift left arithmetic, mesma operação que SHL , mas atualizando os bits de estado cor-

respondentes às operações aritméticas. Permite realizar de forma expedita uma multiplicação
de op por 2n. O valor de const tem que estar compreendido entre 1 e 16.

Em alternativa

SHL R1, 1

11.b) [0,5] Colocar na posição de memória em R1 o conteúdo de R2.

MOV [R1], R2

MOV

Formato: MOV op1, op2 Flags: Nenhuma
Acão: op1 op2, copia o conteúdo de op2 para op1.

Para além dos modos de endereçamento comuns a todas as instruções (conforme Secção 3.4),
esta instrução permite ler e escrever no registo apontador da pilha SP, mas apenas em

conjunção com o modo de endereçamento por registo: MOV SP, Rx e MOV Rx, SP. A primeira
destas instruções será necessária no início de todos os programas que utilizem a pilha.

11.c) [0,5] Chamada condicional à subrotina "rotina", se a última operação aritmética/lógica
teve resultado zero

CALL.Z rotina ; melhor opção

CALL.NP rotina ; Resultado não positivo (≤ 0)
CALL.NN rotina ; Resultado não negativo (≥ 0)

1. d) [0,5] Colocar na pilha o valor da constante “W”

MOV R4, W

PUSH R4

O P3 não permite o modo imediato (constante direta) com a instrução PUSH, por isso é
necessário primeiro carregar a constante num registo.

12. [3] Elabore um programa no assembly do P3. O programa recebe um vetor de números e transforma-o num

vetor de diferenças consecutivas, retornando também o número de elementos válidos.

; --- Definição dos dados iniciais ---

 ORIG 1000h ; Área de dados a partir do endereço 1000h

Vetor WORD 10 ,20 , 30 ,25

; Posição 1000h: 10

; Posição 1001h: 20

; Posição 1002h: 30

; Posição 1003h: 25

; --- Programa principal ---

 ORIG 2000h ; Código a partir do endereço 2000h

Inicio: MOV R1, Vetor ; R1 = endereço inicial do vetor (1000h)

 MOV R2, 4 ; R2 = número de elementos (4)

 ; --- Processamento ---

 MOV R3, R2 ; Copia tamanho original

 DEC R3 ; R3 = novo tamanho (3)

 MOV R4, R1 ; R4 = ponteiro atual (inicia em 1000h)

 MOV R5, R1 ; R5 = ponteiro próximo

 INC R5 ; R5 = 1001h (próxima posição)

Loop: MOV R6, [R5] ; Carrega vetor[i+1]

 SUB R6, [R4] ; Calcula diferença

 MOV [R4], R6 ; Armazena no vetor[i]

 INC R4 ; Avança ponteiro atual

 INC R5 ; Avança ponteiro próximo

 DEC R2 ; Decrementa contador

 CMP R2, 1 ; Verifica se terminou

 BR.NZ Loop ; Continua se não terminou

Fim: HALT ; Termina execução ; Fim do programa

	1.a) Mapa de Karnaugh e simplificação da função F(A,B,C,D)
	1.b) Simplificação da função para Produto de Somas
	2.a) Conversão de 7A4h em base 7
	2.b) Conversão de 65478 para base 10
	3.a) Representação de -215 em binário com 12 bits (complemento de 2)
	3.b) Represente o número 0,7812510 na base 20. Apresente os cálculos.
	4. Simplificação algébrica da função
	Passo 2: Analisar o segundo termo:
	Passo 3: A função fica:
	Passo 4: Expandir (/B + C) (/A + D)
	Passo 5: Substituir e reescrever F:
	Passo 6: Agrupar termos semelhantes para simplificar
	Passo 7:
	Passo 8: Procurar termos que podem ser combinados
	Passo 10: Substituir em F:
	Passo 11: Agrupar C/A + /B/A:
	Passo 12: Escrever F final simplificada:
	5 Implementação com Portas NAND
	6. Implementação com Portas NOR
	7. Implementação com Multiplexer
	8. Diagrama de Estados
	9. Tabela de transição de estados
	10. Simplificação da variável de saída

