
1.a) Mapa de Karnaugh e simplificação da função F(A,B,C,D) 

A função dada é: 

F(A,B,C,D)=∑m(0,4,9,12,15)+∑md(2,5,10,13) 

Passos: 

1. Construir o mapa de Karnaugh: 

Primeiro, cria-se o mapa de Karnaugh de 4 variáveis (A, B, C, D). Como A é a variável de maior 
peso, seguimos a ordem de A, B nas linhas e C, D nas colunas. 

Mapa de Karnaugh (4 variáveis): 

AB\CD 00 01 11 10 

00 m(0) m(1) m(3) m(2) 

01 m(4) m(5) m(7) m(6) 

11 m(12) m(13) m(15) m(14) 

10 m(8) m(9) m(11) m(10) 

Coloca-se a informação fornecida: 

• Mintermos (1): 0, 3, 9, 12, 15 
• Indiferenças (X): 2, 5, 10, 13 

• Restante (0): Todos os outros valores 

O mapa fica: 

AB\CD 00 01 11 10 

00 1 0 0 X 

01 1 X 0 0 

11 1 X 1 0 

10 0 1 0 X 

 

2. Simplificação (Soma de Produtos): 

A partir do mapa de Karnaugh, identificam-se os laços (grupos de 1s) para simplificar a 

expressão: 

AB\CD 00 01 11 10 

00 1 0 0 X 

01 1 X 0 0 

11 1 X 1 0 

10 0 1 0 X 

• Grupo de 1s em m(0) e m(4): /A /C /D 
• Grupo de 1s em m(4) e m(12) e X em m(5) e m(13): B /C 

• Grupo de 1s em m(9) e X em m(13): A /C D 
• Grupo de 1s em m(15) e X em m(13): A B D 

A expressão simplificada é: 

F(A,B,C,D)= /A /C /D + B /C + A /C D + A B D 



1.b) Simplificação da função para Produto de Somas 

Para simplificar a expressão em produto de somas, duplica-se o mapa de Karnaugh e segue-

se o processo de simplificação, laçando-se os 0´s. Observam-se os laços em termos de 
produtos de somas. A expressão simplificada em produto de somas através do Mapa de 

Karnaugh: 

AB\CD 00 01 11 10 

00 m(0) m(1) m(3) m(2) 

01 m(4) m(5) m(7) m(6) 

11 m(12) m(13) m(15) m(14) 

10 m(8) m(9) m(11) m(10) 

 

AB\CD 00 01 11 10 

00 1 0 0 X 

01 1 X 0 0 

11 1 X 1 0 

10 0 1 0 X 

 

• Grupo de 0s em m(8) e X em m(10): /A + B + D 

• Grupo de 0s em m(1), m(3), m(7) e X em m(5): A + /D 
• Grupo de 0s em m(6), m(14) e X em m(2) e m(10): /C + D 

• Grupo de 0s em m(11) e X em m(10): /A +B +/C 

 

    F (A,B,C,D) = (/A + B + D) (A + /D) (/C + D) (/A +B +/C) 

 

2.a) Conversão de 7A4h em base 7 

O número é 7A4h, que está em hexadecimal. Converte-se esse número para base 7. 

1. Converter de hexadecimal para binário: 

o 7 = 0111 
o A = 1010 

o 4 = 0100 

Assim, 7A4h em binário é: 0111 1010 01002 

2. Converter de binário para decimal (base 10):  

(0x211)+(1x210)+(1x29)+(1x28)+(1x27)+(0x26)+(1x25)+(0x24)+(0x23)+(1x22)+(0x21)+(0x20) 

=0+1024+512+256+128+0+32+0+0+4+0+0 = 1956 

3. Converter de decimal (base 10) para base 7 

Converter 1956₁₀ para base 7 usando divisões sucessivas: 

Divisões: 

1956 ÷ 7 = 279, resto 3 



279 ÷ 7 = 39, resto 6 

39 ÷ 7 = 5, resto 4 

5 ÷ 7 = 0, resto 5 

Lendo os restos de baixo para cima = 54637 

 

Logo, 7A4h em base 7 é 54637 

 

Em alternativa pode-se converte de hexadecimal para decimal e depois para base 

septenária, sem necessidade de converter em binário. 

1. Hexadecimal para Decimal 

7A4h = 7×16² + 10×16¹ + 4×16⁰ 

= 7×256 + 10×16 + 4 

= 1792 + 160 + 4 = 1956₁₀ 

Seguir o passo 3 anterior. 

 

2.b) Conversão de 65478 para base 10 

Para converter o número 65478 para base 10, utilizamos a fórmula de conversão de bases: 

65478 = 6 x 83 + 5 x 82 + 4 x 81 + 7 x 80 

Calcula-se cada termo: 

I. 6 x 83 =6 x 512 = 3072 

II. 5 x 82 =5 x 64 = 320 
III. 4 x 81 =4 x 8 = 32 

IV. 7 x 80 =7 x 1 = 7 

Somam-se os resultados: 

3072 + 320 + 32 + 7 = 3431 

O número 65478 em base 10 é 343110 

  



3.a) Representação de -215 em binário com 12 bits (complemento de 2) 

Para representar o número -215 em binário com 12 bits usando o complemento de 2: 

1. Representação de 215 em binário: Converte-se o número positivo 215 para binário: 

215=110101112 

Como se usa 12 bits, adiciona-se quatro zeros à esquerda: 

215=0000110101112 

2. Inverter os bits (complemento de 1): Inverte-se todos os bits da representação 
binária: 

0000110101112 → 1111001010002 

3. Somar 1 ao complemento de 1: Adicionar 1 ao número obtido: 

1111001010002 + 1 = 1111001010012 

A representação de -215 em binário com 12 bits (complemento de 2) é 1111001010012 

3.b) Represente o número 0,7812510 na base 20. Apresente os cálculos. 

Para converter o número decimal 0,78125 para a base 20, seguimos um processo similar ao 

de conversão para outras bases. 

Passo 1: Multiplicar a parte decimal por 20 

A parte decimal do número é 0,7812510. Vamos multiplicar esse valor por 20 e observar a parte 
inteira e a parte decimal do resultado. 

0,78125 × 20 = 15,625 

A parte inteira é 15, e a parte decimal é 0,625. 

Passo 2: Obter o primeiro dígito na base 20 

A parte inteira 15 corresponde ao primeiro dígito na base 20. Para representar esse número na 
base 20, usamos os seguintes símbolos: 

• 0 a 9 representam os mesmos valores que na base 10. 

• A representa 10, 
• B representa 11, 

• C representa 12, 
• D representa 13, 

• E representa 14, 
• F representa 15, 

• G representa 16, 
• H representa 17, 

• I representa 18. 

Portanto, o primeiro dígito é F. 

 



Passo 3: Continuar com a parte decimal 

Com a parte decimal 0,625 repetimos o processo: 

0,625 × 20 = 12,5 

A parte inteira agora é 12, e a parte decimal é 5. O número 12 na base 20 é representado pela 
letra C. 

Passo 4: Resultado final 

Com a parte decimal 0,5 repetimos o processo: 

0,5 × 20 = 10 

O número 10 na base 20 é representado pela letra A. 

Como a parte decimal agora é zero, paramos a conversão. 

A representação de 0,78125 na base 20 é: 

0,7812510=0,FCA20 

 

Grupo II (5 valores) 

Dada a função lógica: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 + 𝐵𝐶)(𝐴 + 𝐵𝐷) +  (𝐵𝐶 + 𝐴𝐷)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

4. Simplificação algébrica da função 

Expandir o produto (A+/BC)(/A+BD) 

Usar a distributiva: 

=A/A + A⋅BD + /BC⋅/A + /BC⋅BD 

Uma variável e seu complemento não podem ser verdadeiros ao mesmo tempo: A/A=0 

=0 + A BD + /BC /A + /BC BD 

Na última parcela, /B⋅B=0, logo: 

/BC BD=0 

Portanto: 

=ABD + /BC /A 

Passo 2: Analisar o segundo termo: 

/(B/C+A/D) 

Aplicando a Lei De Morgan: 

=/(B/C)⋅/(A/D) = (/B + C) (/A + D) 



Passo 3: A função fica: 

F = ABD + /BC /A + (/B + C) (/A + D) 

Passo 4: Expandir (/B + C) (/A + D) 

=/B/ A + /BD + C/A + CD 

Passo 5: Substituir e reescrever F: 

F = ABD + /BC /A + /B/ A + /BD + C/A + CD 

Passo 6: Agrupar termos semelhantes para simplificar 

Notar que BC /A está contido em C/A logo: 

BC /A + C/A = C/A considerando que C/A + BC /A = C/A (1 + /B) = C/A 

Passo 7: 

F = ABD + C/A + /B/A + /BD + CD 

Passo 8: Procurar termos que podem ser combinados 

1. ABD e /BD: 

Podemos escrever D(AB + /B) 

Note que: 

AB + /B = /B + AB 

Utilizando o teorema do complemento: 

/B + AB = (/B + A)(/B + B) = (/B + A)⋅1= /B + A 

Portanto: 

D(AB + /B) = D(/B + A)  

Passo 10: Substituir em F: 

F = C/A + /B/A + D(/B + A) + CD  

Passo 11: Agrupar C/A + /B/A: 

/A (C+/B) 

Passo 12: Escrever F final simplificada: 

F=/A(C + /B)+D(/B+ A) + CD 

  



5 Implementação com Portas NAND 

F=/A(C + /B)+D(/B+ A) + CD 

Equivalências: 

NOT(A) = /A=NAND(A,A) 

AND(A, B) = A⋅B = / NAND(A,B) = NAND(NAND(A,B),NAND(A,B)) 

OR(A, B) = A+B = /(/A⋅B) =NAND(NAND(A,A),NAND(B,B)) 

Termo 1: /A(C + /B) 

/A = NAND(A,A) 

/B = NAND(B,B) 

C+ /B =NAND(NAND(C,C),NAND(B,B)) 

Termo 2: D(/B+ A) 

/B = NAND(B,B) 

/B +A=NAND(NAND(B,B),NAND(A,A)) 

Termo 3: CD 

C D = NAND(C,D) 

 

 

 

 

 



6. Implementação com Portas NOR 

NOR(X,Y)= /(X+Y) , a porta NOR é a negação da porta OR 

/X = NOR(X,X) , NOT usando NOR 

X+Y= / (NOR(X,Y)) = NOT(NOR(X,Y)) = NOR(NOR(X,Y),NOR(X,Y)) , OR usando NOR 

X⋅Y= /(/X + /Y) = NOR(/X,/Y) = NOR(NOR(X,X),NOR(Y,Y)) , AND usando NOR (lei de De Morgan) 

 

F= /A(C + /B)+D(/B+ A) + CD 

 

Termo 1: /A (C + /B) 

/A = NOR(A,A) 

/B = NOR(B,B) 

C + /B = OR(C, /B) = NOR(NOR(C, /B),NOR(C, /B)) 

Termo 2: D(/B+ A) 

/B = NOR(B,B) 

/B +A = NOR(NOR(/B ,A),NOR(/B ,A)) 

Termo 3: CD 

CD = NOR(NOR(C,C),NOR(D,D)) 

 

 

 

 

 



7. Implementação com Multiplexer 

Para implementar F(A, B, C, D) usando um multiplexer de 2 variáveis de seleção: 

1. Escolha das variáveis de seleção: 
o S2 = A, S1 = B 

 
2. Tabela verdade para F(A, B, C): 

A B F(C) 

0 0 

 (0 + /0C)(/0 + 0D)+ /(0/C + 0/D)= 

 (1) (1) + /(0+0) = 
 1+1 = 

 1 

0 1 

 (0 + /1C)+(/0+ 1D)+/(1/C + 0/D)= 

 (0+0C)(1+D)+/(/C +)= 
 (0)(1) + //C = 

 0+ C= 
 C 

1 0 

 (1 + /0C)+(/1+ 0D)+/(0/C + 1/D)= 
 (1)(0)+/(0+/D)= 

 0+D= 
 D 

1 1 

 (1 + /1C)+(/1+ 1D)+/(1/C + 1/D)= 

 (1+0)(0+D)+/(/C+/D)= 
 1 D + /(/C+/D)= 

 D + CD= 
 D(1+C)= 

 D 

 
𝐹(𝐴,𝐵,𝐶,𝐷) = (𝐴+/𝐵𝐶)(/𝐴+𝐵𝐷)+/(B/C+A/D) 

3. Entradas do Multiplexer (I0, I1, I2, I3): 

• I0 = 1 (caso A=0, B=0) 

• I1 = C (caso A=0, B=1) 
• I2 = D (caso A=1, B=0) 

• I3 = D (caso A=1, B=1) 

4. Configuração do Multiplexer: 

Conectar A e B às entradas de seleção S2 e S1, respetivamente, e conectar os valores 
I0, I1, I2, I3 às entradas de dados do multiplexador. 

Expressão final baseada no multiplexer: 

           F(A,B,C) = MUX (A,B, I0=1, I1=C, I2=D, I3=D) 

 

  



8. Diagrama de Estados 

Máquina de Mealy com 4 Estados para Deteção de "1101" 

1. Definição dos estados: 
o S0: Estado inicial (nenhum bit da sequência).Primeiro 1 detetado 

o S1: 1 detetado 

o S2: 0 detetado 
o S3: Sequência "1101" detetada 

 

2. Transições de estados: 
o De S0: 

▪ Entrada 1=0: Permanece em S0 
▪ Entrada 1=1: Transita para S1 

o De S1: 
▪ Entrada 1=0: Transita para S0 

▪ Entrada 1=1: Transita para S2 

o De S2: 
▪ Entrada 1=0: Transita para S3 

▪ Entrada 1=1: Permanece em S2 (múltiplos 1) 
o De S3: 

▪ Entrada 1=0: Transita para S0 

▪ Entrada 1=1: Transita para S1 com Saída Z=E2 
 

3. Saída Z: 
o Z = Entrada 2 somente no estado S3 para S1 com Entrada 1 = 1 (E1=1) 

o Z = 0 nos demais estados 

 

 

 

Mapa de atribuição de estados 

Um mapa de estados normalmente mostra, para cada combinação de entradas, qual será o próximo estado da 

máquina, com base no estado atual e nos valores de entrada. 

Com 4 estados, precisamos de 2 bits para codificá-los (22 =4). 

X1 

X0 
0 1 

0 S0 S1 

1 S2 S3 
 

9. Tabela de transição de estados 

 Atual Entradas Seguinte Estado 

Seguinte 

Saída 

 X1 X0 E1 X1 X0 Z 

S0 0 0 0 0 0 S0 0 

S0 0 0 1 0 1 S1 0 

S1 0 1 0 0 0 S0 0 

S1 0 1 1 1 0 S2 0 

S2 1 0 0 1 1 S3 0 



S2 1 0 1 1 0 S2 0 

S3 1 1 1 0 1 S1 Z= E2 

S3 1 1 0 0 0 S0 0 

 

10. Simplificação da variável de saída 

Condição para Z = E2 

• S3 = Q1 Q0 = 11 

• E1=1 

A saída Z depende de: 

• Estado atual Q1=1, Q0=1 
• Entrada E1 = 1 

• A saída Z = E2 apenas nessa condição 

Expressão booleana para Z: 

• Z=Q1⋅Q0⋅E1⋅E2 

 

Q1 e Q0 são os bits do estado atual. 

Z=E2 apenas quando a Máquina de Estados Finitos está em S3 (Q1=1,Q0=1) e E1=1. 

Caso contrário, Z=0. 

  



11.a) [0,5] Coloca em R1 os seus bits deslocados uma unidade para a esquerda, sendo 
mantido o bit mais significativo 

SHLA R1, 1 

SHLA 

Formato: SHLA op, const         Flags: ZCNO 
Acão: shift left arithmetic, mesma operação que SHL , mas atualizando os bits de estado cor-

respondentes às operações aritméticas. Permite realizar de forma expedita uma multiplicação 
de op por 2n. O valor de const tem que estar compreendido entre 1 e 16. 

 
Em alternativa 

SHL R1, 1 

 
 
11.b) [0,5] Colocar na posição de memória em R1 o conteúdo de R2. 

 
MOV [R1], R2 

 
MOV 

Formato: MOV op1, op2          Flags: Nenhuma 
Acão: op1 op2, copia o conteúdo de op2 para op1. 

Para além dos modos de endereçamento comuns a todas as instruções (conforme Secção 3.4), 
esta instrução permite ler e escrever no registo apontador da pilha SP, mas apenas em 

conjunção com o modo de endereçamento por registo: MOV SP, Rx e MOV Rx, SP. A primeira 
destas instruções será necessária no início de todos os programas que utilizem a pilha. 

 
 

11.c) [0,5] Chamada condicional à subrotina "rotina", se a última operação aritmética/lógica 
teve resultado zero 

 
CALL.Z rotina    ; melhor opção 
 

CALL.NP rotina  ; Resultado não positivo (≤ 0)  
CALL.NN rotina  ; Resultado não negativo (≥ 0) 

 

 
 

1. d) [0,5] Colocar na pilha o valor da constante “W” 



 
MOV R4, W 

PUSH R4 
 

 

O P3 não permite o modo imediato (constante direta) com a instrução PUSH, por isso é 
necessário primeiro carregar a constante num registo. 

12. [3] Elabore um programa no assembly do P3. O programa recebe um vetor de números e transforma-o num 

vetor de diferenças consecutivas, retornando também o número de elementos válidos. 

; --- Definição dos dados iniciais --- 

    ORIG 1000h       ; Área de dados a partir do endereço 1000h 

Vetor      WORD 10 ,20 , 30 ,25          

; Posição 1000h: 10 

; Posição 1001h: 20 

; Posição 1002h: 30 

; Posição 1003h: 25 

 

; --- Programa principal --- 

    ORIG 2000h       ; Código a partir do endereço 2000h 

Inicio:     MOV R1, Vetor    ; R1 = endereço inicial do vetor (1000h) 

    MOV R2, 4        ; R2 = número de elementos (4) 

     

    ; --- Processamento --- 

    MOV R3, R2       ; Copia tamanho original 

    DEC R3           ; R3 = novo tamanho (3) 

    MOV R4, R1       ; R4 = ponteiro atual (inicia em 1000h) 

    MOV R5, R1       ; R5 = ponteiro próximo 

    INC R5           ; R5 = 1001h (próxima posição) 

Loop:     MOV R6, [R5]     ; Carrega vetor[i+1] 

    SUB R6, [R4]     ; Calcula diferença 

    MOV [R4], R6     ; Armazena no vetor[i] 

     

    INC R4           ; Avança ponteiro atual 

    INC R5           ; Avança ponteiro próximo 



    DEC R2           ; Decrementa contador 

    CMP R2, 1        ; Verifica se terminou 

    BR.NZ Loop       ; Continua se não terminou 

Fim:     HALT             ; Termina execução                            ; Fim do programa 
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