Matemática Finita | 21082

Período de Realização

Decorre de 3 a 12 de maio de 2024

Data de Limite de Entrega

12 de maio de 2024, até às 23h59 de Portugal Continental

Tema

Teoria de Números

Critérios de avaliação e cotação

Na avaliação do trabalho serão tidos em consideração os seguintes critérios e cotações:

- A cotação total deste e-Fólio é de 4 valores.
- 2. Com exceção das 3 questões de escolha múltipla, justifique cuidadosa e detalhadamente todos os cálculos, raciocínios e afirmações que efetuar. Nas questões 4 e 5 não será atribuída classificação a uma resposta não iustificada.
- 3. Cada questão de escolha múltipla tem a cotação de 0.3 valor. Por cada resposta incorreta será descontado 0.1 valor. É considerada errada uma questão com mais de uma resposta. A classificação mínima destas 3 questões é de 0 valores.
- 4. A distribuição da cotação é a seguinte:

1–3	ERRADAS				
С		0	1	2	3
E	0	0.0	0.0	0.0	0.0
R	1	0.3	0.2	0.1	
T	2	0.6	0.5		
AS	3	0.9			

4.	5.	
2.3 val.	0.8 val.	

Normas a respeitar

Para a resolução deste E-fólio utilize apenas os recursos e os materiais disponibilizados na Página Central do curso.

As suas respostas às questões deste E-fólio não devem ultrapassar 6 páginas A4.

Escreva sempre com letra legível.

Depois de ter realizado o E-fólio produza um documento em **formato PDF** e nomeie o ficheiro com o seu número de estudante, seguido da identificação do E-fólio, segundo o exemplo apresentado: 000000efolioB.pdf

Deve carregar o referido ficheiro para a plataforma no dispositivo E-fólio B até à data e hora limite de entrega. Evite a entrega próximo da hora limite para se precaver contra eventuais problemas.

O ficheiro a enviar não deve exceder 10 MB.

Votos de bom trabalho!

Maria João Oliveira, Ana Nunes, José Agapito e Nelson Faustino

Enunciado

Em cada questão de escolha múltipla são apresentadas quatro opções, das quais uma, e só uma, obedece às condições pedidas.

- **1.** Dados p um número primo e $a \in \mathbb{N}$ não nulo pode afirmar-se:
 - **A)** $\operatorname{mmc}(p, a) = a \text{ se } p \leq a$
 - **B)** $\operatorname{mmc}(p, a) = a \operatorname{se} p < a$
 - C) $\operatorname{mmc}(p, a) = pa \operatorname{se} p > a$
 - **D)** $\operatorname{mmc}(p, a) = pa$ se a é um número primo
- **2.** Dados $a, b \in \mathbb{N}$ não nulos, considere a seguinte afirmação:

$$2^a-1$$
 e 2^b-1 são múltiplos de $2^{\mathrm{mdc}(a,b)}-1$

- **A)** Esta afirmação só é verdadeira se $a \mid b$ ou $b \mid a$
- **B)** Esta afirmação só é verdadeira se a ou b for um número primo
- C) Esta afirmação só é verdadeira se a e b forem números primos entre si
- D) Esta afirmação é sempre verdadeira
- **3.** Considere as seguintes afirmações:
 - (i) Para qualquer número primo p existe solução da equação $2x \equiv 1 \pmod{p}$
 - (ii) Para qualquer número primo p existe solução da equação $px \equiv 1 \pmod 2$

Relativamente a estas afirmações podemos afirmar:

- A) Ambas as afirmações são verdadeiras
- B) A afirmação (i) é verdadeira, mas a afirmação (ii) é falsa
- C) A afirmação (i) é falsa, mas a afirmação (ii) é verdadeira
- D) Ambas as afirmações são falsas

Nas questões seguintes justifique cuidadosa e detalhadamente todos os cálculos, raciocínios e afirmações que efetuar.

- **4.** Sejam $a,b\in\mathbb{Z}$ dois números primos entre si e $k\geq 2$ um número natural fixo.
 - **4.1.** Verifique que a^k e b são números primos entre si.
 - **4.2.** Por recurso ao método de indução matemática prove que qualquer que seja o número inteiro $n>0,\,a^k$ e b^n são números primos entre si.
 - 4.3. De modo eficiente calcule

$$mdc((-9581)^{123} + (2006)^{12}, (1003)^{12}).$$

5. Dados $a, b \in \mathbb{Z}$ e dados $n, m \in \mathbb{N}$ tais que $n, m \geq 2$, seja $M = \operatorname{mmc}(n, m)$. Mostre que $a \equiv b \pmod{n}$ e $a \equiv b \pmod{m}$ se, e só se, $a \equiv b \pmod{M}$.