

NOME: Maria da Conceição de Abreu Martinho e Fortunato

N.º DE ESTUDANTE: 2100378

CURSO: Licenciatura em Engenharia Informática

TURMA: 2025-03

RELATÓRIO

E-folio B

UNIDADE CURRICULAR: Arquitetura de Computadores

CÓDIGO: 21010

DOCENTE: Carlos Sousa

TUTOR: Filipe Ramos

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 1 de 22

Índice:

1 Estrutura global do programa ... 2

1.1 Origem dos dados ... 2

1.2 Origem do programa .. 2

1.3 Pilha, ... 2

1.4 Variáveis ... 3

1.5 Constantes ... 3

1.6 Fluxo do programa e controlo de fluxo.. 4

2 Fluxo e rotinas: .. 5

2.1 Alínea a: .. 5

2.1.1 Rotinas criadas ... 5

2.1.2 Tarefas que executam ... 5

2.1.3 Entradas ... 5

2.1.4 Saídas ... 6

2.1.5 Opções consideradas. .. 6

2.1.6 Evidências de funcionamento ... 6

2.2 Alínea b: .. 8

2.2.1 Rotinas criadas ... 8

2.2.2 Tarefas que executam ... 8

2.2.3 Entradas ... 8

2.2.4 Saídas ... 9

2.2.5 Opções consideradas. .. 9

2.2.6 Evidências de funcionamento ... 9

2.3 Alínea c: .. 9

2.3.1 Rotinas criadas ... 9

2.3.2 Tarefas que executam ... 9

2.3.3 Entradas ... 10

2.3.4 Saídas ... 11

2.3.5 Opções consideradas. .. 11

2.3.6 Evidências de funcionamento ... 11

2.4 Alínea d: .. 11

2.4.1 Rotinas criadas ... 11

2.4.2 Tarefas que executam ... 11

2.4.3 Entradas ... 12

2.4.4 Saídas ... 12

2.4.5 Opções consideradas. .. 13

2.4.6 Evidências de funcionamento ... 13

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 2 de 22

1 Estrutura global do programa

O objetivo é construir um programa em Assembly para o processador pedagógico P3,

que permita o comando e controlo de um sistema de movimento linear constituído,

especialmente, por: motor de passo, fuso (eixo), rolamento e base de movimento.

O programa enunciado era suposto ser desenvolvido em 4 alíneas separadas, que

têm um carácter incremental. Tendo isto em conta pareceu-me melhor desenvolver o

programa de forma integrada, num único programa fácil de testar e de avaliar.

Optei por uma estrutura modular que permitisse uma leitura e funcionamento mais

eficiente, de acordo com as explicações que se seguem.

1.1 Origem dos dados

Os dados são armazenados em memória a partir do endereço 8000h, conforme os

requisitos do software - (inscritos no enunciado do E-folio B).

Isto é feito através uso da diretiva ou pseudo-instrução ORIG 8000h que é destinada

a ser tratada pelo assembler.

1.2 Origem do programa

O programa é armazenado em memória a partir do endereço 0000h, conforme os

requisitos do software, inscritos no enunciado do E-folio B.

Aqui foi usada a diretiva ORIG também, agora com o endereço 0000h.

1.3 Pilha,

Embora não seja solicitado nos requisitos do software, é necessário iniciar apontador

para a pilha com um endereço, por forma a permitir a chamada a rotinas e sub-

rotinas, e salvaguarda do conteúdo dos registos (R1 a R7) para uso posterior.

Foi escolhido o endereço FDFFh, que tem em conta as seguintes contingências:

• O espaço de memória endereçável do P3 é de 64 k palavras (2
16

) pelo que a

memória total ocupa os endereços 0 a 65535, em decimal ou 0h a FFFFh;

• Os últimos 255 endereços (FF00h a FFFFh) estão reservados para dispositivos

de entradas e saídas (I/O);

• Os anteriores 255 endereços (FE00h a FEFFh) estão reservados para a gestão

de interrupções;

• A pilha tem funcionamento inverso, os endereços usados de seguida serão o

ponteiro da pilha (SP) – 1.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 3 de 22

Evitando, assim, conflito com as zonas de I/O e interrupções e garantindo espaço

suficiente para as chamadas aninhadas de rotinas.

Na arquitetura do processador P3, embora possam ser usados 2 operandos, um deles

tem de ser um registo, obrigatoriamente, pelo que tem de se dividir a inicialização

da Pilha em 2 instruções:

1. Copia o endereço do apontador inicial para um registo acessível ao

programador escolhi o registo R2 – ver linha 20 do programa;

2. Copia o endereço guardado no registo escolhido para o Registo da Pilha

(registo 14 – SP) – ver linha 21 do programa.

1.4 Variáveis

As variáveis que criadas estão em linha com os requisitos do software, inscritos no

enunciado do E-folio B.

POSICAO_ATUAL – Conterá a coordenada, em milímetros (mm) da posição atual da

base de movimento, fica armazenada no endereço de memória 8000h.

POSICAO_DESTINO - Conterá a coordenada, em mm da posição de destino da base

de movimento, fica armazenada no endereço de memória 8001h.

A diferença entre as duas variáveis é a distância, em mm, que a base tem de percorrer.

_SENTIDO_MOVIMENTO – Guardará o sentido do movimento que a base tem de

percorrer: 0, para movimento para a esquerda e 1, para movimento para a direita.

Fica armazenada no endereço de memória 8002h.

As variáveis foram inicializadas com 0.

Estas variáveis são partilhadas entre as várias rotinas permitindo que as mesmas

comuniquem o estado atual do sistema.

1.5 Constantes

Recorri às diretivas (pseudo-instruções) EQU e STR para criar constantes com o

objetivo de tornar o código mais legível e facilitar qualquer revisão dos valores

atribuídos inicialmente, passando a ser necessário alterar estes valores apenas uma

vez.

IO_SENSOR – Em vez do endereço FFF9h, usado na rotina fornecida LE_SENSOR, foi

iniciada com o referido endereço, através da já referida diretiva EQU.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 4 de 22

O endereço FFF9h corresponde ao primeiro dos interruptores, que é usado para

simular a ativação do sensor de origem. A rotina foi atualizada com a etiqueta desta

constante.

IO_DIRECAO - Em vez do endereço FFF8h, usado nas rotinas fornecidas SET_DIRECAO

e MOVIMENTO, foi iniciada com o referido endereço através da referida diretiva EQU.

O Endereço FFF8h corresponde ao conjunto de 16 LEDs, sendo usados os últimos 2

bits no programa. As rotinas foram atualizadas com a etiqueta desta constante

SP_INICIAL – Conterá o endereço do ponteiro da pilha (SP), foi iniciada com o endereço

FDFFh através da referida diretiva EQU.

LIMITE_MIN – Usada para a verificação dos limites, na rotina construída para a alínea

b) e reaproveitada na alínea c), foi iniciada com o valor 0 através da diretiva EQU, que

corresponde à posição absoluta, em mm, mais à esquerda, que é também a posição

inicial, após a calibragem inicial do sistema.

LIMITE_MAX - Usada para a verificação dos limites, na rotina construída para a alínea

b) e reaproveitada na alínea c), foi iniciada com o valor 100 através da diretiva EQU,

que corresponde à posição absoluta, em mm, mais à direita, que é também

comprimento total do eixo.

DESTINOS – Trata-se de um vetor usado para tratar a sequência de destinos (posições

absolutas, em mm) requeridos na alínea d). Foi iniciada, através da diretiva STR com

os valores 30, 10, 50, 115, 50. O penúltimo valor está fora dos limites falados

anteriormente, e destina-se a testar o comportamento das rotinas criadas para as

para as alíneas b) e c), e o último valor destina-se a testar o comportamento das

rotinas quando as posições atual e de destino coincidem.

1.6 Fluxo do programa e controlo de fluxo

O fluxo do programa é controlado a partir da rotina MAIN, que é responsável por

inicializar a pilha, chamar as rotinas de calibragem do sistema (alínea a), e de

processamento dos destinos (alínea d), e, no final, termina a execução.

O fluxo do programa é então como segue:

Após a definição da origem dos dados, é feita a definição e iniciação de variáveis e

constantes.

De seguida o programa entra no controlador do fluxo, a rotina MAIN.

A rotina MAIN inicializa o ponteiro da pilha, e chama a rotina INICIAR_SISTEMA (Alínea

a), para calibragem do sistema.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 5 de 22

Após a correta calibragem, com a POSICAO_ATUAL situada na posição absoluta 0, a

rotina MAIN chama a rotina PROCESSA_DESTINOS.

PROCESSA_DESTINOS percorre o vetor de destinos e, para cada posição, usa as rotinas

das alíneas b) e c) para verificar se o movimento está dentro dos limites 0–100 mm.

Se o movimento for possível, calcula o sentido (esquerda ou direita) e o número de

impulsos necessários, executa o movimento e atualiza a variável POSICAO_ATUAL.

2 Fluxo e rotinas:

Irei agora detalhar, para cada alínea as rotinas criadas e o seu funcionamento.

2.1 Alínea a:

É pedida uma rotina, ou rotinas, que processe a calibragem do sistema na posição

absoluta 0, uma vez que quando iniciado o sistema pode estar em qualquer posição

aleatória.

2.1.1 Rotinas criadas

Para esta alínea foram criadas as rotinas INICIAR_SISTEMA, POSICAO_INICIAL as quais

chamam as rotinas fornecidas SET_DIRECAO, IMPULSO (que chama a rotina DELAY) e

LE_SENSOR.

2.1.2 Tarefas que executam

A rotina INICIAR_SISTEMA define o sentido de rotação para a esquerda e chama a

rotina fornecida SET_DIRECAO, a qual ativa o sinal de direção do motor e escreve na

memória, na variável _SENTIDO_MOVIMENTO a direção do movimento (esquerda ou

direita).

Na fase de calibragem do sistema o sentido escrito na variável

_SENTIDO_MOVIMENTO é esquerda, pois procuramos chegar à posição 0, que é a

mais à esquerda.

A rotina POSICAO_INICIAL chama as rotinas fornecidas IMPULSO e LE_SENSOR para

dar os passos ao motor, e repete até que o sensor de origem se ative, altura em que

atualiza a variável POSICAO_ATUAL com o valor 0, terminando assim o processo de

calibração do sistema.

2.1.3 Entradas

À entrada a rotina INICIAR_SISTEMA define o sentido de rotação para a esquerda,

escrevendo 0 no registo acumulador (R1=0).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 6 de 22

2.1.4 Saídas

À saída restaura o valor do registo R1, preservado na pilha.

Garante que o valor variável _SENTIDO_MOVIMENTO = 0 (endereço de memória

8002h) – valor do sentido para a esquerda, bem como o valor da variável

POSICAO_ATUAL = 0 (endereço de memória 8000h) – valor da posição Inicial.

2.1.5 Opções consideradas.

Não foram consideradas outras opções nesta alínea.

2.1.6 Evidências de funcionamento

Para facilitar a recolha de evidências alterei o valor dos ciclos de DELAY de 0FFFh para

000Fh.

À entrada pela primeira vez para a rotina

DELAY, a rotina IMPULSO acende pela

primeira vez o segundo LED, o primeiro

fica apagado, pois o movimento é para a

esquerda, caso em que o valor

transmitido é 0, logo o LED não acende.

O segundo LED aceso indica que foi

ativado um impulso.

Á entrada pela segunda vez para a rotina

DELAY esta, apaga o segundo LED,

criando um pisca-pisca aparente do

segundo LED, que simula a transmissão

de impulsos para o motor até que até que

o Sensor de origem seja ativado.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 7 de 22

Aparência dos registos na primeira entrada na rotina DELAY e

na segunda entrada na mesma rotina.

Agora vou acionar o Sensor de Origem para simular a chegada

à posição 0.

Depois deste ciclo de impulsos, e tendo sido premido o

primeiro botão de interruptores, o programa ao regressar à

rotina POSICAO_INICIAL, chamar a rotina LE_SENSOR, a qual

envia para o Registo R1 o valor 1 indicando que foi ativado o

sensor de origem.

De seguida atualiza

POSICAO_ATUAL = 0,

indicando que foi

atingida a posição mais à

esquerda, terminando a

execução do programa.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 8 de 22

2.2 Alínea b:

É pedida uma rotina, ou rotinas, que leia os valores guardados nas variáveis

POSICAO_ATUAL e POSICAO_DESTINO e verifique se estas se encontram dentro dos

limites do eixo (0 a 100 mm) e devolva em R3 1, se o movimento for possível ou 0 se

o movimento for impossível.

2.2.1 Rotinas criadas

Para esta alínea foram criadas as rotinas LEITURA_POSICOES, VERIFICA_LIMITES,

MOVIMENTO_IMPOSSIVEL e MOVIMENTO_POSSIVEL

2.2.2 Tarefas que executam

A rotina LEITURA_POSICOES lê os valores das variáveis POSICAO_ATUAL e

POSICAO_DESTINO, chamando de seguida a rotina VERIFICA_LIMITES.

A rotina VERIFICA_LIMITES avalia se os valores da POSICAO_ATUAL e

POSICAO_DESTINO estão dentro dos limites (0 a 100 mm), comparando os seus

valores com as contantes LIMITE_MIN e LIMITE_MAX.

Se as variáveis POSICAO_ATUAL e POSICAO_DESTINO estiverem dentro dos limites, é

devolvido em R3 o valor 1, indicando que o movimento é possível, finalizando a

execução de seguida, na rotina MOVIMENTO_POSSIVEL.

Caso contrário, a rotina MOVIMENTO_IMPOSSIVEL devolve 0 em R3.

A verificação da possibilidade ou impossibilidade de realizar o percurso entre a

POSICAO_ATUAL e POSICAO_DESTINO é feita do seguinte modo:

1. Verifica-se se POSICAO_ATUAL < 0 (CMP R1, LIMITE_MIN e salto BR.N), se

negativo, o movimento é impossível;

2. Verifica-se se POSICAO_ATUAL > 100 (CMP R1, LIMITE_MAX e salto BR.P), se

for positivo, o movimento é impossível;

3. Verifica-se se POSICAO_DESTINO < 0 (CMP R2, LIMITE_MIN e salto BR.N), se

negativo, o movimento é impossível;

4. Verifica-se se POSICAO_DESTINO > 100 (CMP R2, LIMITE_MAX e salto BR.P), se

for positivo, o movimento é impossível.

Passando estes testes sem que o movimento possa ser considerado impossível, então

o movimento é possível, ou seja, 0 < POSICAO_ATUAL < 100 e 0 < POSICAO_DESTINO

< 100 e é tratado pela rotina MOVIMENTO_POSSIVEL.

2.2.3 Entradas

Leitura dos valores das variáveis POSICAO_ATUAL e POSICAO_DESTINO.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 9 de 22

2.2.4 Saídas

Se o movimento for possível a rotina MOVIMENTO_POSSIVEL devolve 1 no registo R3,

caso contrário a rotina MOVIMENTO_IMPOSSIVEL devolve 0 no registo R3.

2.2.5 Opções consideradas.

Considerei a hipótese de aferir a possibilidade do movimento através da diferença

entre POSICAO_DESTINO e POSICAO_ATUAL, mas isso apenas indica se o movimento

deve ser feito para a direita ou para a esquerda, não servindo o propósito desta

alínea.

2.2.6 Evidências de funcionamento

O comportamento das rotinas desta alínea será testado na alínea d), através da

verificação dos valores das entradas e saídas (R1, R2 e R3).

2.3 Alínea c:

É pedida uma rotina, ou rotinas, que leia os valores guardados nas variáveis

POSICAO_ATUAL e POSICAO_DESTINO e, caso o movimento seja possível, devolva em

R3 o número de impulsos necessário para o movimento e em R4 devolva o valor do

sentido do movimento (0= esquerda, 1= direita).

2.3.1 Rotinas criadas

Para esta alínea foram criadas as rotinas MOVIMENTO, ESQUERDA, DIREITA, IMPULSOS

e NAO_MEXE.

Foram reaproveitadas as rotinas criadas na alínea b).

2.3.2 Tarefas que executam

A rotina MOVIMENTO, chama com a rotina LEITURA_POSICOES, criada na alínea b),

cujo funcionamento está explicado.

Recebe, então, da rotina chamada pela referida rotina (VERIFICA_LIMITES) o valor 0

(movimento impossível) ou valor 1 (movimento possível),

Se o movimento for impossível não faz nada e termina a execução do programa.

Caso contrário verifica se a POSICAO_ATUAL (em R1) é superior, inferior ou igual à

POSICAO_DESTINO (em R2).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 10 de 22

Se as referidas posições forem iguais, não faz nada e devolve o número de

impulsos=0 (em R3) e o sentido, esquerda ou direita a 0 (em R4) e termina a execução

programa.

Se POSICAO_ATUAL < POSICAO_DESTINO, o movimento será para a direita e é

chamada a rotina DIREITA. Esta rotina devolve R4=1 (movimento para a direita),

calcula a distância entre as duas posições e segue para o cálculo no número de

impulsos.

Caso POSICAO_ATUAL > POSICAO_DESTINO, o movimento será para a esquerda e é

chamada a rotina ESQUERDA. Esta rotina devolve R4=0 (movimento para a esquerda),

calcula a distância entre as duas posições e chama a rotina IMPULSOS.

A rotina IMPULSOS recebe a distância entre as duas posições e multiplica essa

distância por 20 para calcular o número de impulsos necessários.

A razão por que se multiplica por 20 é que é explicado no enunciado que são

necessários 2000 impulsos para percorrer 100 mm, isto quer dizer que para cada 10

mm são necessários 200 impulsos e que para percorrer 1 mm, são necessários 20

impulsos.

Em vez de usar a instrução de multiplicação (MUL) ou de usar as instruções de

multiplicação e divisão (MUL e DIV) que são de tratamento mais complexo, decidi

usar a instrução de deslocamento SHLA, fazendo a multiplicação em 4 fases.

A primeira fase é criar duas cópias do valor da distância, para serem trabalhadas em

separado.

A segunda fase faz um deslocamento de 4 bits para a esquerda, o que equivale a

multiplicar a distância por 16.

A terceira fase faz um deslocamento de 2 bits para a esquerda, o que equivale a

multiplicar a distância por 4.

A última fase é adicionar a distância multiplicada por 16 com a distância multiplicada

por 4, seja 16x+4x=20x.

Por fim é escrito no registo R3 o número impulsos e termina a execução do programa.

2.3.3 Entradas

Estas rotinas recebem em R1 o valor da POSICAO_ATUAL e em R2 o valor da

POSICAO_DESTINO.

Em R3, recebem 0 (se o movimento for impossível) ou 1 (se o movimento for possível).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 11 de 22

2.3.4 Saídas

Estas rotinas devolvem em R3 o número de impulsos necessários para realizar o

movimento e em R4 o valor do sentido de deslocamento (0=esquerda ou 1=direita).

2.3.5 Opções consideradas.

Tal como foi referido anteriormente, considerei a hipótese de usar a instrução de

multiplicação (MUL) ou de usar as instruções de multiplicação e divisão (MUL e DIV),

mas considerei estas de tratamento mais complexo

2.3.6 Evidências de funcionamento

O comportamento das rotinas desta alínea será testado na alínea d, através da

verificação dos valores das entradas e saídas (R1, R2, R3, R4 e endereços de memória

8000h a 8007h).

2.4 Alínea d:

É pedida uma rotina, ou rotinas, que inicie o sistema do eixo (feito na alínea a) mova

o eixo para diversas posições absolutas (30 mm, 10 mm, 50 mm) devendo antes de

cada movimento usar a rotina fornecida SET_DIRECAO.

Com o objetivo de testar as funcionalidades das alíneas anteriores foram incluídas,

além das posições absolutas, referidas, a posição 115mm (fora dos limites do eixo)

e a posição 50mm que deve testar, após o pedido impossível de realizar, o caso em

que POSICAO_ATUAL é igual à POSICAO_DESTINO.

Para tratar as diferentes posições foi criada a constante DESTINOS (explicada no

ponto 1.5 – constantes).

2.4.1 Rotinas criadas

Para esta alínea foram criadas as rotinas PROCESSA_DESTINOS,

SEQUENCIA_DESTINOS, PROCESSA_MOV, EXECUTA_MOV, DEC_IMPULSOS, e

ATUALIZA_POS_ATUAL

2.4.2 Tarefas que executam

A rotina PROCESSA_DESTINOS, apenas coloca o índice de destino a 0, num registo

(R7) que fará o papel de variável iteradora, seguindo de seguida para a rotina

SEQUENCIA_DESTINOS.

As rotinas PROCESSA_DESTINOS e PROCESSA_MOVIMENTO reutilizam as rotinas das

alíneas b) e c) LEITURA_POSICOES, VERIFICA_LIMITES e MOVIMENTO.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 12 de 22

A rotina SEQUENCIA_DESTINOS, depois de verificar se já foram tratados todos os

destinos (caso em se termina a execução do programa), passa ao próximo destino a

ser processado, chamando a rotina MOVIMENTO, que realiza as tarefas explicadas na

alínea c). De seguida é chamada a rotina PROCESSA_MOV.

A rotina PROCESSA_MOV recebe as informações relativas ao número de impulsos (R3)

e sentido da rotação (R4), chamando de seguida a rotina SET_DIRECAO, informando

o sentido de rotação (R4).

De seguida entra-se na rotina EXECUTA_MOV verifica se já foram dados todos os

impulsos, caso em que chama a rotina ATUALIZA_POS_ATUAL, caso contrário chama

a rotina fornecida IMPULSO vai gerando impulsos na direção indicada por

_SENTIDO_MOVIMENTO.

Após cada impulso, a rotina DEC_IMPULSOS decrementa o número de impulsos que

faltam e envia de volta para a rotina EXECUTA_MOV, até que já não hajam impulsos

para dar (R3=0).

Quando já não houver impulsos a realizar (R3=0), a rotina ATUALIZA_POS_ATUAL

atualiza o valor da POSICAO_ATUAL com o valor da POSICAO_DESTINO, porque foi

atingida a posição que se pretendia atingir.

A seguir termina a execução do programa (caso já tenha percorrido todos os

destinos), ou passa ao próximo destino para processamento do movimento.

2.4.3 Entradas

As diversas rotinas desta alínea, recebem as seguintes informações:

1. Destino a tratar da conjugação da constante DESTINOS com o valor da variável

iteradora (R7);

2. Número de impulsos a realizar, em R3;

3. Sentido da rotação em R4.

2.4.4 Saídas

As diversas rotinas desta alínea, enviam as seguintes informações:

1. Destino a tratar (em R2 e POSICAO_DESTINO);

2. Sentido da rotação;

3. Atualiza POSICAO_ATUAL.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 13 de 22

2.4.5 Opções consideradas.

Foi estudada e considerada outra forma de tratar o vetor DESTINOS, como usar a

diretiva TAB, mas essa hipótese mostrou-se desadequada ao pretendido porque não

permite inicializar valores, apenas reservar posições de memória inicializadas a zero.

2.4.6 Evidências de funcionamento

Entrada na rotina PROCESSA_DESTINOS, após a calibração do sistema, onde é possível

verificar os seguintes valores:

Registos:

1. R1 = R3 = R5

= R6 = R7 =

0 valores

iniciais do

sistema

inicializado

corretamente e;

2. R2 = FDFFh, valor da posição inicial do ponteiro da pilha.

Memória:

1. 8000h (POSICAO_ATUAL) = 8001h (POSICAO_DESTINO) = 0, posições iniciais

do sistema inicializado corretamente;

2. 8002h (_SENTIDO_MOVIMENTO) = 0, indicando que foi realizado um

movimento para a esquerda;

3. 8003h (DESTINO[0]) = 001Eh (corresponde a 30 em notação decimal);

4. 8004h (DESTINO[1] = 000Ah (corresponde a 10 em notação decimal);

5. 8005h (DESTINO[2] = 0032h (corresponde a 50 em notação decimal);

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 14 de 22

6. 8006h (DESTINO[3] = 0073h (corresponde a 115 em notação decimal);

7. 8007h (DESTINO[4] = 0032h (corresponde a 50 em notação decimal);

Depois de entrar na rotina SEQUENCIAS_DESTINOS:

recebeu em R1 o

endereço de

memória onde se

encontra o primeiro

destino (8003h

(DESTINO[0])) e em

R2 o valor do

próximo destino

001Eh

(corresponde a 30

em notação

decimal),

atualizando o valor

de

POSICAO_DESTINO

(8001h) com o valor

do próximo9

destino 001Eh.

Chamará depois a rotina MOVIMENTO que encaminhará para a rotina

LEITURA_POSICOES que lerá os valores das posições atual e de destino e decidirá se

pode ou não realizar o movimento.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 15 de 22

A rotina MOVIMENTO já

recebeu a indicação de que o

movimento é possível (R3=1)

e vai agora verificar para que

sentido deve ser feito o

movimento.

Mantém a informação da

POSICAO:ATUAL (0) em R1 e

a POSICAO_DESTINO (001Eh

– 30d) em R2.

Além disso, com estes

valores, comprovámos o bom

funcionamento das rotinas

da alínea b).

Agora irá verificar se as duas

posições são iguais, caso em

que não faz nada, ou se

realiza um movimento para direita ou para a esquerda.

A rotina MOVIMENTO

verificou que o movimento

é possível: escreveu R4 = 1

e passou ao cálculo dos

deslocamentos de 4 e 2

bits. Podemos verificar que

R1 contém o valor 01E0h

(480d = 30*16) e R6

contém o valor 0078h

(120d = 30*4).

Após a saída da rotina

MOVIMENTO, é possível

comprovar o bom

funcionamento das rotinas

da alínea c) que devolvem

corretamente em R3,

número de impulsos = 258h

(ou seja 600d) e em R4,

sentido direita (R4 = 1).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 16 de 22

Entrará agora nas rotinas da alínea d) para processar e executar o movimento 600

impulsos para a direita.

Enquanto são gerados impulsos para

atingir a posição de destino é possível

verificar que o último LED assinala

corretamente um movimento para a

direita e o penúltimo LED vai piscando

com os impulsos.

Também é possível

verificar na posição de

memória 8002h

(_SENTIDO_MOVIMENTO) o valor 1, correspondente ao sentido para a direita

Após processar e

executar o

movimento para o

primeiro destino

(001Eh - 30 em

decimal) o valor da

variável

POSICAO_ATUAL foi

atualizado (valor

001Eh na posição de

memória 8000h).

Irá agora passar para

o destino seguinte.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 17 de 22

A rotina

SEQUENCIA_DESTINOS, já

passou corretamente ao

próximo destino e é possível

ver na memória em

POSICAO_ATUAL (8000h) o

valor 001Eh, indicando que o

eixo se encontra na posição

30, bem na

POSICAO_DESTINO (8001h)

o valor 000Ah, indicando

que o próximo é a posição

10.

Vão agora seguir-se os

passos anteriores:

1. Ler as posições atuais e de

destino;

2. Verificar se o movimento possível;

3. Caso seja possível, em que direção (esquerda ou direita);

4. Calcular o número de impulsos necessários;

5. Atualiza _SENTIDO_MOVIMENTO;

6. Fazer a sucessão de impulsos necessários para ir da posição 30 à posição 10 (400

impulsos para a esquerda);

7. Atualizar a posição atual para 10 (000Ah).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 18 de 22

Após atualizar o sentido do

movimento, possível verifica

em R3 o número de impulsos

necessários (0190h – ou seja

(30-10) x 20 = 400 impulsos)

POSICAO_ATUAL = 001Eh

(30d), POSICAO_DESTINO =

000Ah (10d) e sentido

esquerda (0 em

_SENTIDO_MOVIMENTO –

8002h).

Após selecionar o novo

destino, é possível ver que

foram calculados com

sucesso:

POSICAO_ATUAL = 000Ah

(10d) – na posição de

memória 800h;

POSICAO DESTINO = 0032h

(50d) – na posição de

memória 8001h;

_SENTIDO_MOVIMENTO para

a direita – na posição de

memória 8002h, porque 50 >

10;

R3 = 0320h (800 d = (50-10)

x 20);

R4 = 1 (sentido de rotação para a direita):

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 19 de 22

R7 = 2, significando que iremos agora executar o movimento para DESTINO[2].

gravado na posição de memória 8005h.

Iremos de seguida verificar o que acontece ao tentarmos processar um destino fora

dos limites

Após passar ao destino

seguinte, na posição de

memória 8001h, é possível

ver o valor 0073h (115 d) e

em R7 está o valor 3,

significando que iremos

tratar o DESTINO[3].

A rotina MOVIMENTO já

informou que o movimento é

impossível (R3 = 0), também

informou que o movimento

seria para a direita (R4 =

_SENTIDOMOVIMENTO

(8002h) = 1).

É ainda possível verificar que

POSICAO_ATUAL tem o valor

0032h (50d) última posição legal encontrada.

De seguida passará ao processamento do próximo destino, no qual testaremos o que

acontece quando a posição atual é igual à posição de destino.

Após selecionar o último

destino, podemos verificar

que POSICAO_DESTINO

apresenta o valor 0032h

(50d) o registo R7 = 4,

significando que iremos

tratar o DESTINO[4] (último

destino, posição de memória

8007h) e que o movimento

foi classificado como

possível, por se encontrar dentro dos limites (R3=1).

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 20 de 22

Vai agora entrar na rotina PROCESSA_MOV e verificar que o movimento não pode ser

realizado porque POSICAO_ATUAL = POSICAO_DESTINO, terminando o

processamento do movimento e devolvendo 0 em R3 (0 impulsos) e R4 = 0

A rotina PROCESSA_MOV

verificará que não há nada a

fazer e tentará passar ao

próximo destino.

Como este é último destino

terminará a execução do

programa.

Confirma-se que o programa

termina com os valores

esperados em R3, R4, R7 e

nas posições de memória

8000h a 8007h.

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 21 de 22

Programa, escrito na Disassemble Zone do Simulador P3, no site

https://p3js.goncalomb.com/,

https://p3js.goncalomb.com/

https://p3js.goncalomb.com/

E-Folio B / Relatório / Arquitetura de Computadores 2025/2026

Maria Fortunato / 2100378 / 2025-03 Página 22 de 22

Lista de referências e etiquetas do programa

