Análise Infinitesimal 21175 — ano lectivo 2022-2023 6 de dezembro de 2022

e-fólio A — proposta de resolução

1. Considere a seguinte função

$$f: \left[-\frac{5}{2}, \frac{\pi}{2}\right] \to \mathbb{R} \quad \text{com} \quad f(x) = \begin{cases} 2x^2 + 3x & \text{se } x \le 0\\ 2\sin(x) + x + 1 & \text{se } x > 0 \end{cases}$$

- a) Estude a continuidade de f no seu domínio $\left[-\frac{5}{2}, \frac{\pi}{2}\right]$.
- b) Estude a monotonia de f.
- c) Indique o contradomínio de f.
- d) Esboce o gráfico da função f.

Resolução:

a) **Primeiro ramo:** A função $2x^2 + 3x$ é um polinómio e, portanto, contínua em \mathbb{R} . Logo, f(x) é contínua em $\left[-\frac{5}{2},0\right[$.

Segundo ramo: A função $2\sin(x)+x+1$ é elementar e então contínua em $\left]0,\frac{\pi}{2}\right]$. É elementar pois é obtida a partir das funções básicas — função $\sin(x)$, função identidade x (por adição) e funções constantes 2 (por multiplicação) e 1 (por adição).

Ponto x = 0: O limite lateral à esquerda $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 2x^2 + 3x = 0$ difere do limite lateral à direita

 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} 2\sin(x) + x + 1 = 2\sin(0) + 0 + 1 = 1, \ \text{logo o limite}$ $\lim_{x\to 0} f(x) \text{ não existe e a função } f(x) \text{ não é contínua em 0. O cálculo directo dos limites laterais é possível pois as funções } 2x^2 + 3x \text{ e } 2\sin(x) + x + 1 \text{ são contínuas tal como mostrado atrás.}$

Conclusão: A função f(x) é contínua em $\left[-\frac{5}{2}, \frac{\pi}{2}\right] \setminus \{0\}$ e descontínua em 0.

b) **Primeiro ramo:** A função quadrática $2x^2 + 3x = ax^2 + bx + c$ com a = 2, b = 3 e c = 0 é uma parábola com a concavidade virada para cima (pois a > 0), e com mínimo em $\frac{-b}{2a} = \frac{-3}{4}$. Logo f é monótona decrescente em $\left[-\frac{5}{2}, -\frac{3}{4}\right]$ e monótona crescente no intervalo $\left[-\frac{3}{4}, 0\right]$.

Segundo ramo: A função $\sin(x)$ é monótona crescente no intervalo $\left]0,\frac{\pi}{2}\right]$ logo, para $x_1,x_2\in\left]0,\frac{\pi}{2}\right]$ com $x_1\leq x_2$, temos $\sin(x_1)\leq\sin(x_2)$ o que implica

 $2\sin(x_1) \le 2\sin(x_2) \Rightarrow 2\sin(x_1) + x_1 + 1 \le 2\sin(x_2) + x_2 + 1$, isto é, a função f(x) é monótona crescente em $\left[0, \frac{\pi}{2}\right]$.

Ponto x = 0: A função tem uma descontinuidade neste ponto com f(0) = 0 inferior ao limite à direita de zero $\lim_{x\to 0^+} f(x) = 1$ (ver alínea anterior).

Conclusão: A função f(x) é monótona decrescente em $\left[-\frac{5}{2},-\frac{3}{4}\right]$ e monótona crescente em $\left[-\frac{3}{4},\frac{\pi}{2}\right]$.

c) **Primeiro ramo:** O mínimo da parábola é $f\left(\frac{-b}{2a}\right) = c - \frac{b^2}{4a}$, isto é, $f\left(\frac{-3}{4}\right) = -\frac{9}{8}$. E nos extremos do intervalo em que está definida, a parábola toma valores $f\left(\frac{-5}{2}\right) = 5$ e f(0) = 0. Logo, como a função quadrática é contínua, o ramo decrescente da parábola tem contradomínio $\left[-\frac{9}{8}, 5\right]$, o ramo crescente da parábola tem contradomínio $\left[-\frac{9}{8}, 0\right]$ e, portanto, a parábola tem contradomínio $\left[-\frac{9}{8}, 5\right] \cup \left[-\frac{9}{8}, 0\right] = \left[-\frac{9}{8}, 5\right]$.

Segundo ramo: O limite lateral direito em x=0 é $\lim_{x\to 0^+} f(x)=1$ e no extremo $x=\frac{\pi}{2}$ do intervalo, a função f(x) toma o valor $f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+3$. Portanto, a função neste ramo contínua (ver alínea a)) e monótona crescente (ver alínea b)), vai ter como contradomínio o intervalo $\left[1,\frac{\pi}{2}+3\right]$.

Conclusão: A função f(x) tem contradomínio $\left[-\frac{9}{8}, 5\right] \cup \left[1, \frac{\pi}{2} + 3\right] = \left[-\frac{9}{8}, 5\right]$ pois $\frac{\pi}{2} + 3 < \frac{4}{2} + 3 = 5$.

d) A partir do que foi calculado nas alíneas anteriores, é conhecida a forma genérica da função. Para completar o gráfico, temos em consideração os valores aproximados $\frac{\pi}{2}\approx 1,57$ e $\frac{\pi}{2}+3\approx 4,57$ e vamos calcular os zeros da função quadrática no primeiro ramo:

$$2x^2 + 3x = 0 \Leftrightarrow x(2x+3) = 0 \Leftrightarrow x = 0 \lor x = -3/2.$$

Em relação à forma do segundo ramo, com expressão $2\sin(x) + x + 1$, podemos considerar a forma aproximada de $\sin(x)$ com o dobro da amplitude, o que corresponde a uma curva com a concavidade para baixo no intervalo considerado, trasladada (adição de 1) no sentido positivo do eixo das ordenadas e deformada com a adição da identidade x.

Logo o gráfico da função é

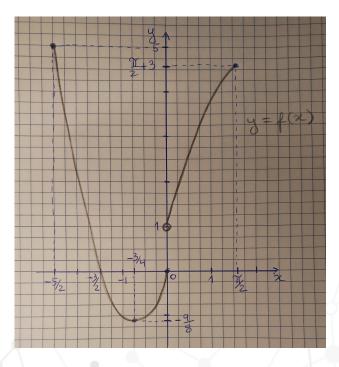


Figura 1: Esboço do gráfico de f.

2. Considere as funções f e q seguintes:

- a) Mostre, justificando, que uma destas funções é injectiva e que a outra não o é.
- b) Caracterize a função inversa da função injectiva.

Resolução:

a) A função $-(x-3)^2$ em \mathbb{R} define uma parábola com a concavidade virada para baixo e vértice em (3,0).

Função f(x): Esta função corresponde a uma parte do ramo crescente da parábola. Sejam $x_1, x_2 \leq 0$ quaisquer, tais que $x_1 \neq x_2$. Então $x_1 - 3 \neq x_2 - 3$ o que implica $(x_1 - 3)^2 \neq (x_2 - 3)^2$, dado $x_1 - 3$ e $x_2 - 3$ serem ambos negativos. Logo $-(x_1 - 3)^2 \neq -(x_2 - 3)^2$ e podemos concluir que a função f(x) é injectiva.

Função g(x): Se escolhermos qualquer par de pontos não negativos x_1 e x_2 , um de cada lado de x=3 e a igual distância deste, conseguimos provar que a função é não injectiva. Por exemplo, para $x_1=1$ e $x_2=5$ temos $x_1 \neq x_2$ mas $g(x_1)=-4=g(5)$, isto é, a função g(x) não é injectiva.

b) A função $f(x) = -(x-3)^2$ é contínua, pois é um polnómio, e injectiva no seu domínio $]-\infty,0]$, tal como mostrado na alínea anterior. Logo f(x) é estritamente monótona e o seu contradomínio é um intervalo com extremos $\lim_{x\to-\infty} f(x) = -\infty$ e f(0) = -9. Portanto o domínio da função inversa $f^{-1}(x)$ é $D_{f^{-1}} =]-\infty,-9]$. A expressão analítica da função inversa é obtida a partir da expressão $f(x) = y \Leftrightarrow -(x-3)^2 = y$, com $y \in]-\infty,-9]$. Resolvendo em ordem a x obtemos $(x-3)^2 = -y \Leftrightarrow x-3=\pm\sqrt{-y}$ mas, dado $x \in]-\infty,0]$ e, portanto, $x-3\in]-\infty,0]$, escolhemos a raíz negativa, isto é $x-3=-\sqrt{-y} \Leftrightarrow x=-\sqrt{-y}+3$. Em conclusão:

$$f^{-1}:]-\infty, -9] \rightarrow \mathbb{R}$$

 $x \mapsto -\sqrt{-x} + 3$

3. Considere a função

$$f(x) = \frac{x^2(x-2)\cos(e^x)}{x^3 - 4x}$$

definida no seu domínio e calcule os seguintes limites

- a) $\lim_{x\to 2} f(x)$
- $\mathbf{b)} \lim_{x \to -\infty} f(x)$
- $\mathbf{c)} \lim_{x \to +\infty} \frac{f(x)}{x}$

Resolução:

a) As funções $\cos(x)$ e e^x são funções básicas, logo a sua composição é uma função elementar e daí resulta que $x^2(x-2)\cos(e^x)$ é também uma função elementar e, portanto, contínua. Podemos então fazer o cálculo directo $\lim_{x\to 2} x^2(x-2)\cos(e^x) = 2\times 0\times \cos(e^2) = 0$. Temos também que $\lim_{x\to 2} x^3 - 4x = 0$ e, portanto, $\lim_{x\to 2} f(x)$ dá uma indeterminação do tipo $\frac{0}{0}$. Factorizando o polinómio no denominador para tentar levantar a indeterminação obtemos

$$\lim_{x \to 2} \frac{x^2(x-2)\cos(e^x)}{x(x-2)(x+2)} = \lim_{x \to 2} \frac{x\cos(e^x)}{(x+2)} = \frac{2\cos(e^2)}{4} = \frac{\cos(e^2)}{2}.$$

b) Pela justificação dada na alínea anterior, podemos fazer o cálculo directo $\lim_{x\to -\infty}\cos(e^x)=\cos(0)=1$. Daqui resulta que

 $\lim_{x\to -\infty} x^2(x-2)\cos(e^x) = -\infty \text{ e que } \lim_{x\to -\infty} f(x) \text{ dá uma indeterminação do tipo } \frac{\infty}{\infty}.$ Dividindo numerador e denominador pelo termo de maior grau, x^3 , obtemos

$$\lim_{x \to -\infty} \frac{\frac{x^2(x-2)\cos(e^x)}{x^3}}{\frac{x^3-4x}{x^3}} = \lim_{x \to -\infty} \frac{\left(1-\frac{2}{x}\right)\cos(e^x)}{1-\frac{4}{x}} = \frac{(1-0)\times 1}{1-0} = 1.$$

Nota: usando a simplificação obtida na alínea a), $\frac{x\cos(e^x)}{(x+2)}$, o processo é análogo: indeterminação do tipo $\frac{\infty}{\infty}$, divisão do numerador e denominador pelo termo de maior grau, que neste caso é x, e obtenção de

$$\lim_{x \to -\infty} \frac{\cos(e^x)}{1 + \frac{2}{x}} = \frac{1}{1 + 0} = 1.$$

- c) A função $\frac{f(x)}{x}$ tem expressão $\frac{x^2(x-2)\cos(e^x)}{x(x^3-4x)} = \frac{x^2(x-2)\cos(e^x)}{x^3-4x} = \frac{\cos(e^x)}{x+2}$. Como $\lim_{x\to +\infty} e^x = +\infty$ então o limite $\lim_{x\to +\infty} \cos(e^x)$ não existe.
- Temos $-1 \le \cos(e^x) \le 1$ e, considerando a restrição $x \in \mathbb{R}^+$, temos $\frac{-1}{x+2} \le \frac{\cos(e^x)}{x+2} \le \frac{1}{x+2}$. Como $\lim_{x \to +\infty} \frac{-1}{x+2} = \lim_{x \to +\infty} \frac{1}{x+2} = 0$, para todo o $x \in \mathbb{R}^+$, então pelo Teorema dos limites enquadrados temos $\lim_{x \to +\infty} \frac{\cos(e^x)}{x+2} = 0$.

4. Mostre que a função

$$h:]-1, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto xe^x + x\ln(x+1) + (x-1)$

tem pelo menos duas raízes, uma à direita e outra à esquerda de x = 0.

Resolução:

Em x = 0 a função toma o valor

$$h(0) = 0 \times e^0 + 0 \times \ln(0+1) + (0-1) = -1 < 0.$$

Para calcular o limite da função nos extremos do seu domínio vamos usar o cálculo directo pois a função é elementar (obtida a partir das funções básicas e^x , $\ln(x)$, identidade e constante) e, portanto, contínua.

À esquerda de
$$x = 0$$
: Dado que $\lim_{x \to -1} xe^x = -\frac{1}{e}$, que

$$\lim_{x \to -1} \ln(x+1) = -\infty$$
 e que $\lim_{x \to -1} x - 1 = -2$, temos

$$\lim_{x \to -1} xe^x + x \ln(x+1) + (x-1) = +\infty$$
. Logo existe algum $x_1 \in]-1, 0[$ tal que $h(x_1) > 0$.

No intervalo $[x_1, 0] \subset]-1, 0]$ a função é contínua e toma valores com sinais diferentes. Logo, pelo Teorema de Bolzano, nesse intervalo existe pelo menos uma raíz, isto é, um x_2 tal que $h(x_2) = 0$.

À direita de x=0: Analogamente, dado que $\lim_{x\to +\infty}xe^x=+\infty$, que

$$\lim_{x \to +\infty} \ln(x+1) = +\infty \text{ e que}$$

$$\lim_{x \to +\infty} x - 1 = +\infty, \text{ temos}$$

$$\lim_{x\to+\infty} xe^x + x\ln(x+1) + (x-1) = +\infty. \text{ Logo existe algum } x_3 \in]0, +\infty[$$
 tal que $h(x_3) > 0$ (por exemplo, para $x_3 = 1$ temos $h(x_3) = h(1) = e + \ln 2 > 0$).

No intervalo $[0, x_3] \subset [0, +\infty[$ a função é contínua e toma valores com sinais diferentes. Logo, pelo Teorema de Bolzano, nesse intervalo existe pelo menos uma raíz, isto é, um x_4 tal que $h(x_4) = 0$.

5. Considere a seguinte sucessão:

$$\begin{cases} x_0 = 1 \\ x_{n+1} = \sqrt{3x_n - 1} & \text{para} \quad n = 0, 1, 2, \dots \end{cases}$$

- a) Prove que x_n é uma sucessão crescente.
- **b)** Prove que $x_n \le 4, \ \forall n = 0, 1, 2....$
- c) Prove que x_n é convergente e calcule o seu limite.

Resolução:

a) Vamos provar por indução que $\forall n \in \mathbb{N}_0$ temos $\mathcal{A}(n)$, onde $\mathcal{A}(n) \Leftrightarrow x_n < x_{n+1}$.

Mostrar $\mathcal{A}(\mathbf{0})$: Temos $x_0 = 1$ e $x_1 = \sqrt{3x_0 - 1} = \sqrt{2}$, logo $x_0 < x_1$, isto é, verifica-se a relação $\mathcal{A}(0)$.

Mostrar $\mathcal{A}(n) \Rightarrow \mathcal{A}(n+1), \forall n \in \mathbb{N}$: Seja $n \in \mathbb{N}$ qualquer. A relação $\mathcal{A}(n)$, dada pela desigualdade $x_n < x_{n+1}$, implica $3x_n - 1 < 3x_{n+1} - 1$, o que implica $\sqrt{3x_n - 1} < \sqrt{3x_{n+1} - 1}$, dado a função raíz quadrada ser estritamente crescente em \mathbb{R}^+_0 . A última desigualdade é equivalente, pela definição da sucessão, a $x_{n+1} < x_{n+2}$, isto é, à relação $\mathcal{A}(n+1)$.

b) Vamos provar por indução que $\forall n \in \mathbb{N}_0$ temos $\mathcal{A}(n)$, onde $\mathcal{A}(n) \Leftrightarrow x_n \leq 4$.

Mostrar $\mathcal{A}(\mathbf{0})$: Temos $x_0 = 1 \le 4$.

Mostrar $\mathcal{A}(n) \Rightarrow \mathcal{A}(n+1), \forall n \in \mathbb{N}$: Seja $n \in \mathbb{N}$ qualquer. A relação $\mathcal{A}(n)$, dada pela desigualdade $x_n \leq 4$, implica $3x_n - 1 \leq 3 \times 4 - 1 = 11$, o que implica $\sqrt{3x_n - 1} \leq \sqrt{11}$, dado a função raíz quadrada ser estritamente crescente em \mathbb{R}^+ . Como $\sqrt{11} < \sqrt{16} = 4$, temos $\sqrt{3x_n - 1} \leq 4$. A última desigualdade é equivalente, pela definição da sucessão, a $x_{n+1} \leq 4$, isto é, à relação $\mathcal{A}(n+1)$.

c) Na alínea a) provámos que a sucessão era monótona. Vamos agora mostrar que é limitada: sabemos, pela alínea a), que

 $1 = x_1 < x_2 < x_3 < \ldots$, isto é, $1 \le x_n$ para todo o $n \in \mathbb{N}_0$, e, pela alínea b), sabemos que $x_n \le 4$ para todo o $n \in \mathbb{N}_0$. Logo $\forall n \in \mathbb{N}_0$ temos $1 \le x_n \le 4$, isto é, a função é limitada.

Como a função é monótona e limitada então tem limite finito. Seja $L=\lim_{n\to +\infty}x_n$ e vamos determinar L, a partir da equação recursiva $x_{n+1}=\sqrt{3x_n-1}$, calculando o limite:

 $\lim_{n\to+\infty} x_{n+1} = \lim_{n\to+\infty} \sqrt{3x_n - 1} \Leftrightarrow L = \sqrt{3L - 1}.$ Esta equação implica $L^2 = 3L - 1 \Leftrightarrow L^2 - 3L + 1 = 0 \Leftrightarrow L = \frac{3\pm\sqrt{5}}{2}.$ A raíz menor sai fora do intervalo [1,4] de valores da sucessão, pois $\frac{3-\sqrt{5}}{2} < \frac{3-\sqrt{4}}{2} = \frac{1}{2}.$ Logo o limite da sucessão é $L = \frac{3+\sqrt{5}}{2}.$