

Proposta de projeto

Simulador de Carreiras

Licenciatura em Eng. Informática
Programação por Objetos 25/26 2400250 – José Barão Vieira

Diagrama de classes

Legenda:
 Herança
 Composição

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Protótipos em Python

from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import date
from typing import List, Optional

@dataclass
class Posto:
 """Objeto simples que representa um posto militar."""
 nome: str
 idade_limite: int

@dataclass
class HistoricoPosto:
 """Elemento do histórico (COMPOSIÇÃO dentro de Militar)."""
 posto: Posto
 data_inicio: date
 data_fim: Optional[date] = None

 def fechar(self, quando: date) -> None:
 """Fecha o período num posto."""
 self.data_fim = quando

class Militar(ABC):
 """Superclasse abstrata. Define o CONTRATO que as subclasses têm de implementar."""
 def __init__(self, nim: int, nome: str, data_nascimento: date) -> None:
 self.nim = nim
 self.nome = nome
 self.data_nascimento = data_nascimento
 # COMPOSIÇÃO: o Militar "tem" um histórico de postos
 self.historico: List[HistoricoPosto] = []

 def idade_em(self, ref: date) -> int:
 """Calcula a idade do militar (em anos) numa dada data de referência."""
 return ref.year - self.data_nascimento.year

 def posto_atual(self) -> Optional[Posto]:
 """Devolve o posto atual, se existir algum registado no histórico."""
 return self.historico[-1].posto if self.historico else None

 def promover(self, novo_posto: Posto, quando: date) -> None:
 """Regista mudança de posto no histórico (usa a composição)."""
 if self.historico:
 self.historico[-1].fechar(quando)
 self.historico.append(HistoricoPosto(novo_posto, quando))

 # CONTRATO: métodos que TODAS as subclasses devem concretizar
 @abstractmethod
 def calcular_idade_limite(self) -> int:
 """Devolve a idade-limite (em anos) para este militar. A implementação concreta deve calcular a idade-limite em função
 do posto atual e da categoria (por exemplo, Oficial ou Sargento). Pré-condição: o militar tem um posto atual válido."""
 ...

 @abstractmethod
 def categoria(self) -> str:
 """Identifica a categoria do militar (por exemplo, 'Oficial' ou 'Sargento'). Este valor é usado pelo código cliente para tratar objetos Militar de
forma polimórfica, sem testar explicitamente o tipo concreto com isinstance ou comparações de classe."""
 ...

class Oficial(Militar):
 """Subclasse concreta que HERDA de Militar."""
 # OVERRIDE: concretiza o contrato definir idade limite
 def calcular_idade_limite(self) -> int:
 posto = self.posto_atual()
 return posto.idade_limite if posto else 60

 # OVERRIDE: concretiza o contrato definir categoria
 def categoria(self) -> str:
 return "Oficial"

class Sargento(Militar):
 """Outra subclasse concreta."""

 def calcular_idade_limite(self) -> int: # override
 return 58

 def categoria(self) -> str: # override
 return "Sargento"

EXEMPLOS DE CRIAÇÃO E USO
if __name__ == "__main__":
 hoje = date(2030, 1, 1)

 # Criar alguns postos
 aspirante = Posto("Aspirante", idade_limite=56)
 alferes = Posto("Alferes", idade_limite=60)
 sargento2 = Posto("2ª Sargento", idade_limite=60)

 # HERANÇA: Oficial e Sargento são ambos Militar
 m1: Militar = Oficial(1001, "Ana", date(1990, 5, 10))
 m2: Militar = Sargento(1002, "Bruno", date(1988, 7, 20))

 # COMPOSIÇÃO: adicionar elementos ao histórico
 m1.promover(aspirante, date(2020, 1, 1))
 m1.promover(alferes, date(2025, 1, 1))
 m2.promover(sargento2, date(2022, 1, 1))

 # POLIMORFISMO + OVERRIDE:
 # Chamadas passam sempre pelo mesmo contrato de Militar,
 # mas cada subclasse responde de forma específica.
 for m in (m1, m2):
 print(f"{m.nome} ({m.categoria()})")
 print(" Posto atual:", m.posto_atual().nome)
 print(" Idade em 2030:", m.idade_em(hoje))
 print(" Idade limite:", m.calcular_idade_limite())
 print()

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Cenários de Evolução

Cenário A: Violação do Princípio Abertas/Fechadas

Descrição: Um dia podemos querer introduzir uma forma de ordenação dos militares elegíveis (por exemplo,
deixar de ser só antiguidade e passar a uma ponderação do mérito).

Para implementar isto na forma atual, teríamos de modificar o método de seleção/ordenação em GestorCarreiras,
introduzindo novos ramos (if por categoria/quadro), violando o princípio abertas/fechadas. Uma forma de mitigar
esta violação do princípio abertas/fechadas seria extrair a lógica de ordenação dos elegíveis para uma estratégia
configurável (por exemplo, uma classe ou função de “política de ordenação”), permitindo acrescentar novos
critérios sem alterar o código interno do GestorCarreiras.

Avaliação de plausibilidade: ALTA – Em sistemas de gestão de carreiras militares, as regras de ordenação para
promoções nem sempre são estáticas e variam entre categorias.

Cenário B: Respeito do Princípio Abertas/Fechadas

Descrição: Um dia podemos querer começar a simular a carreira de um militar da categoria de Praças.

Para implementar isto na forma atual, basta concretizar a subclasse Praca (já prevista na hierarquia Militar),
definindo os seus atributos específicos e as implementações de calcular_idade_limite() e
eh_elegivel_promocao(). O restante código continua a trabalhar apenas com o tipo base Militar (listas de militares,
seleção de elegíveis, relatórios), sem qualquer alteração às superclasses.

Avaliação de plausibilidade: ALTA – É muito provável que um simulador de carreiras militares venha a ser
estendido às Praças, pois são essenciais para o dimensionamento global dos efetivos e para o planeamento a
médio prazo.

Cenário A: Violação do Princípio de Substituição de Liskov (LSP)

Descrição: Um dia podemos querer introduzir um relatório RelatorioTempoMedioNoPosto, como subclasse de
RelatorioSimulacao, que calcula o tempo médio de permanência em cada posto.

Para introduzir esta métrica, a implementação do relatório passa a assumir que todos os Militar têm o
HistoricoPosto completo desde o início da carreira. Sempre que, ao processar os eventos da simulação ou ao gerar
o texto, o relatório deteta um militar com histórico incompleto, lança uma exceção ou aborta o cálculo, tratando
esse caso como um estado inválido do sistema. No entanto, o contrato original de RelatorioSimulacao não exigia
histórico completo e funcionava de forma robusta com dados parciais. Desta forma, por passar a depender de
uma pré-condição mais forte, quebra-se a substituibilidade: o código passa a poder falhar inesperadamente
quando recebe um RelatorioTempoMedioNoPosto, apesar de usar a mesma interface.

Plausibilidade: ALTA – Em contextos de planeamento de efetivos e gestão de carreiras é muito comum querer
introduzir métricas mais sofisticadas, como o tempo médio de permanência no posto, a partir de dados históricos.

Cenário B: Respeito do Princípio de Substituição de Liskov (LSP)

Descrição: Um dia podemos querer introduzir um novo tipo de evento, EventoAbateAosQuadros, como subclasse
de EventoCarreira, para representar a situação em que o militar é abatido aos quadros.

Esta subclasse acrescenta apenas campos específicos (por exemplo, motivo_abate e posto_final) e implementa
validar() de forma semelhante às outras subclasses, verificando apenas a consistência interna dos seus próprios
dados (datas válidas, posto final definido). Os relatórios existentes que apenas contabilizam promoções e
reservas continuam a funcionar, pois tratam a lista de EventoCarreira de forma genérica e podem simplesmente
ignorar eventos de tipo “ABATE_AOS_QUADROS” ou tratá-los como mais um tipo terminal de carreira. Desta forma,
qualquer código que opera sobre EventoCarreira pode receber instâncias de EventoAbateAosQuadros sem falhas
inesperadas, preservando a substituibilidade e respeitando o LSP.

Plausibilidade: ALTA – Em sistemas de gestão de carreiras militares é comum distinguir entre passagem à reserva,
e outras saídas resultantes da atrição no decorrer do serviço, o que é designado por abate aos quadros.

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Tabela de Decisões

Situação de Dúvida Justificação Aplicação do Princípio
Abertas/Fechadas

Usar uma classe abstrata Militar
com subclasses Oficial, Sargento
e Praca, em vez de um único
Militar com campo “categoria”?

O estado e os métodos de carreira (NIM,
quadro, histórico, promoção, reserva) são
comuns; as diferenças estatutárias ficam
nas subclasses através de override. Evita if
categoria espalhados.

RESPEITA – O Cenário B (passar a
simular Praças) faz-se apenas
concretizando a subclasse Praca,
sem alterar Militar nem o simulador.

Definir eh_elegivel_promocao()
como abstrato em Militar ou
centralizar toda a lógica em
GestorCarreiras com ramos por
categoria/quadro?

Cada categoria conhece as suas próprias
regras legais (idade limite, tempos
mínimos/máximos), que variam entre
Oficiais e Sargentos e Praças.
GestorCarreiras foca-se só em vagas e
ordenação, chamando o método
polimórfico.

RESPEITA – Novas regras para uma
categoria obrigam apenas a mexer na
respetiva subclasse de Militar; a
infraestrutura (GestorCarreiras,
SimuladorCarreira) permanece
fechada.

Guardar apenas postoAtual em
Militar ou usar composição
Militar *-- HistoricoPosto com
lista de períodos?

O histórico é um componente natural do
Militar, mas com ciclo de vida dependente
dele. HistoricoPosto concentra datas de
início/fim e permite calcular tempos e
trajetórias sem encher Militar de campos.

RESPEITA – Novos relatórios ou
estatísticas sobre “tempo em cada
posto” usam o histórico sem alterar
Militar; acrescentam apenas
operações de leitura/cálculo sobre a
lista de HistoricoPosto.

Manter RelatorioQuadro e
RelatorioIndividual
independentes ou introduzir
superclasse abstrata
RelatorioSimulacao com
métodos abstratos e override?

RelatorioSimulacao define o contrato
comum (registar_evento, gerar_texto,
exportar_json) e reaproveita a composição
com EventoCarreira. Cada relatório só
especializa a forma de agregar e apresentar.

RESPEITA – Novos relatórios (por tipo
de promoção, por idade de saída,
etc.) nascem como novas subclasses
de RelatorioSimulacao, sem
alterações ao simulador, que
continua a depender apenas da
abstração.

Introduzir uma superclasse
abstrata EventoCarreira com
duas subclasses
(EventoPromocao e
EventoReserva), em vez de um
único EventoCarreira com campo
“tipo”.

O significado e os dados relevantes de uma
promoção (posto de origem/destino,
impacto em vagas) são diferentes de uma
passagem à reserva (fecho de carreira,
impacto definitivo no quadro). Separar em
subclasses permite encapsular validações
e efeitos específicos sem encher
EventoCarreira de if tipo, mantendo cada
classe com invariantes mais simples.

RESPEITA – Novos tipos de evento
(reclassificação, regressão,
passagem à disponibilidade, etc.)
podem ser acrescentados como
novas subclasses de EventoCarreira,
sem alterar GestorCarreiras nem
RelatorioSimulacao, que continuam a
depender apenas da abstração.

Calcular estatísticas diretamente
sobre listas de Militar ou usar
composição RelatorioSimulacao
*-- EventoCarreira e trabalhar
sobre eventos?

EventoCarreira regista de forma genérica
promoções e passagens à reserva,
independente da categoria. Os relatórios
apenas consomem estes eventos, sem ter
de conhecer a estrutura interna de Militar.

RESPEITA – Novos tipos de evento ou
relatórios específicos podem ser
introduzidos por extensão (novas
subclasses de
EventoCarreira/RelatorioSimulacao).
A única futura violação prevista está
na forma de ordenação dos elegíveis
em GestorCarreiras (Cenário A).

Situação de Dúvida Justificação Aplicação do LSP / Ação Tomada

Como introduzir
RelatorioTempoMedioNoPosto
sem violar o LSP?

A métrica de tempo médio exige mais
dados, e existe de quebrar a
sustentabilidade por haver um reforço de
pré-condição face a RelatorioSimulacao

Calcular a média apenas para
militares com dados suficientes e
sinalizar/ignorar os restantes, sem
reforçar as pré-condições da
superclasse.

O relatório pode assumir
HistoricoPosto completo para
todos os militares?

RelatorioSimulacao funciona com
históricos parciais (snapshots, testes);
exigir completude reforça a pré-condição.

Manter o contrato flexível; se for
necessário histórico completo,
validar isso numa fase anterior
(carregamento/controlo), não na
subclasse.

Onde tratar os dados históricos
adicionais (BD/ficheiros)
usados nas estatísticas?

Se o relatório fizer I/O nos métodos,
introduz falhas externas numa hierarquia
que era puramente em memória

Carregar dados via
RepositorioDados/fábricas antes da
simulação; os relatórios operam
apenas sobre o estado já carregado
em memória

Como introduzir
EventoAbateAosQuadros na
hierarquia EventoCarreira?

É um novo tipo de fim de carreira; relatórios
antigos não o conhecem e não devem falhar
por causa disso

Definir EventoAbateAosQuadros
como subclasse com campos e
validar() próprios; relatórios genéricos
podem tratá-lo como EventoCarreira
normal ou ignorá-lo explicitamente

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Lista de testes (U-Unitários e de I-Integração)

ID Tipo Resumo Como permite testar um
princípio SOLID

TU1 U
RelatorioTempoMedioNoPosto com militares com
HistoricoPosto incompleto não lança exceção e
ignora/sinaliza esses casos

Testa LSP – o novo relatório
continua a aceitar os mesmos
estados que RelatorioSimulacao,
sem reforçar pré-condições

TU2 U
RelatorioTempoMedioNoPosto usado através de uma
referência RelatorioSimulacao gera texto válido sem
código especial

Testa LSP – valida que a
subclasse pode ser usada como
um RelatorioSimulacao genérico,
sem if de tipo nem adaptações
no cliente

TU3 U

RelatorioTempoMedioNoPosto.registar_evento()
processa EventoPromocao e EventoReserva
mantendo as mesmas invariantes de
RelatorioSimulacao (eventos contados, anos
simulados) e apenas acrescenta estatísticas de tempo
médio.

Testa LSP/OCP – garante que a
subclasse estende o
comportamento dos relatórios
(enriquece com tempo médio)
sem alterar o contrato base nem
quebrar código existente

TU4 U
EventoAbateAosQuadros.validar() verifica apenas a
consistência interna (datas, motivo, posto_final) tal
como outros eventos

Testa LSP – confirma que o novo
subtipo de EventoCarreira
respeita o mesmo contrato de
validação, sem novas falhas ou
efeitos laterais

TI1 I

ControladorSimulacao executa a simulação primeiro
com RelatorioQuadro e depois com
RelatorioTempoMedioNoPosto, sem alterações ao
controlador

Testa OCP + LSP – demonstra que
é possível adicionar um novo tipo
de relatório estendendo
RelatorioSimulacao sem
modificar o controlador e
mantendo a substituibilidade
pela mesma interface

TI2 I
Sistema com vários militares (promoções, reservas e
abates aos quadros) gera relatórios existentes sem
falhas nem branches específicos

Testa LSP – valida que
EventoAbateAosQuadros se
integra na hierarquia
EventoCarreira sem quebrar
relatórios antigos nem exigir if por
tipo de evento

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Relatório de evolução

Incoerência identificada: A análise dos cenários de evolução mostrou que a introdução
de RelatorioTempoMedioNoPosto como subclasse de RelatorioSimulacao podia violar o
LSP. Enquanto RelatorioQuadro e RelatorioIndividual funcionam bem com históricos
parciais (apenas parte da carreira, dados de teste, etc.), a primeira ideia para
RelatorioTempoMedioNoPosto assumia que todos os Militar tinham HistoricoPosto
completo. Com dados incompletos, o relatório podia falhar o cálculo ou lançar exceções
em gerar_texto(), reforçando pré-condições face à superclasse e quebrando a
substituibilidade.

Consequência no projeto: Se isso não fosse tratado, teríamos:

1. Código cliente que usa RelatorioSimulacao a falhar inesperadamente quando recebe
RelatorioTempoMedioNoPosto;

2. Testes frágeis, obrigados a fabricar históricos “perfeitos” só para esta subclasse;
3. Uma hierarquia onde uma subclasse exige mais do que a superclasse, contrariando o

LSP.

Decisão tomada (refatoração): Para respeitar o LSP sem reescrever o sistema todo de
dados, decidiu-se:

1. RelatorioTempoMedioNoPosto não lança exceções por causa de históricos
incompletos;

2. Militares sem dados suficientes são contados como “ignorados” nas estatísticas, mas
o relatório é sempre gerado;

3. O contrato de RelatorioSimulacao é mantido: registar_evento() + gerar_texto()
funcionam com os mesmos eventos e estados que nas outras subclasses.

Princípios de design envolvidos

LSP (principal)

✓ Não há pré-condições reforçadas: o novo relatório aceita os mesmos dados que os
restantes;

✓ Não há pós-condições enfraquecidas: continua a devolver sempre um texto de
relatório válido;

✓ O código cliente pode tratar RelatorioTempoMedioNoPosto como um
RelatorioSimulacao genérico, sem if por tipo.

OCP (secundário)

✓ Foi possível acrescentar um novo relatório com métricas de tempo médio sem alterar
RelatorioSimulacao nem o SimuladorCarreira;

✓ O comportamento base é mantido, apenas enriquecido com estatísticas adicionais.

DIP (implícito)

O relatório trabalha sobre abstrações de domínio (EventoCarreira, HistoricoPosto),
deixando o carregamento/limpeza de dados para outras camadas, o que facilita testes e
respeita a separação de responsabilidades.

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Código de dois testes

TU1 – RelatorioTempoMedioNoPosto com militares com HistoricoPosto incompleto
import unittest
from datetime import date
from projeto.dominio import Posto, HistoricoPosto, TipoPosto, QuadroEspecial
from projeto.relatorios import RelatorioQuadro, RelatorioTempoMedioNoPosto
from projeto.eventos import EventoPromocao

class TestRelatorioTempoMedioNoPostoTU1(unittest.TestCase):
 def test_relatorios_substituiveis_com_historico_incompleto(self):
 """TU1 – RelatorioTempoMedioNoPosto com histórico incompleto não reforça
 pré-condições face a RelatorioSimulacao."""

 # Histórico "completo" para o militar 1
 posto_tenente = Posto(TipoPosto.TENENTE, tempo_minimo=3, tempo_maximo=8,
idade_limite=60)
 posto_capitao = Posto(TipoPosto.CAPITAO, tempo_minimo=4, tempo_maximo=10,
idade_limite=62)

 historico_m1 = [
 HistoricoPosto(posto_tenente, date(2020, 1, 1), date(2023, 1, 1)),
 HistoricoPosto(posto_capitao, date(2023, 1, 2), None),
]

 # Histórico "incompleto/defeituoso" para o militar 2
 historico_m2 = [
 HistoricoPosto(posto_tenente, None, None), # datas em falta de propósito
]

 historicos_por_nim = {
 1: historico_m1,
 2: historico_m2,
 }

 eventos = [
 EventoPromocao(militar_nim=1, posto_origem=TipoPosto.TENENTE,
posto_destino=TipoPosto.CAPITAO),
 EventoPromocao(militar_nim=2, posto_origem=TipoPosto.TENENTE,
posto_destino=TipoPosto.CAPITAO),
]

 # Baseline: RelatorioQuadro (tipo já existente na hierarquia)
 relatorio_quadro = RelatorioQuadro(
 quadro=QuadroEspecial.INFANTARIA,
 ano_inicial=2020,
 ano_final=2024,
)
 for e in eventos:
 relatorio_quadro.registar_evento(e)
 texto_quadro = relatorio_quadro.gerar_texto()
 self.assertIn("total", texto_quadro.lower())

 # Novo subtipo: RelatorioTempoMedioNoPosto
 relatorio_tempo_medio = RelatorioTempoMedioNoPosto(
 quadro=QuadroEspecial.INFANTARIA,
 historicos_por_nim=historicos_por_nim,
 ano_inicial=2020,
 ano_final=2024,
)

 # Act – usar o mesmo padrão de utilização que para qualquer RelatorioSimulacao
 for e in eventos:
 relatorio_tempo_medio.registar_evento(e)

 # Não deve lançar exceção ao gerar o texto, apesar do histórico incompleto
 texto_tempo_medio = relatorio_tempo_medio.gerar_texto()

 # Invariantes: continua a haver um relatório de texto válido
 self.assertIsInstance(texto_tempo_medio, str)
 # E a lógica interna deve conseguir distinguir pelo menos um “ignorado”
 self.assertGreaterEqual(relatorio_tempo_medio.total_militares_ignorados, 1)

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

TI1 – Mesmo fluxo com RelatorioQuadro e RelatorioTempoMedioNoPosto
import unittest
from datetime import date

from projeto.dominio import (Posto,HistoricoPosto,TipoPosto,QuadroEspecial,Oficial)
from projeto.relatorios import RelatorioQuadro, RelatorioTempoMedioNoPosto
from projeto.gestao import GestorQuadros, GestorCarreiras, CriterioOrdenacaoElegiveisPorDefeito
from projeto.simulacao import SimuladorCarreira

class TestSimulacaoComRelatoriosTI1(unittest.TestCase):
 def test_mesmo_fluxo_com_dois_tipos_de_relatorio(self):
 """TI1 – O mesmo fluxo de simulação (SimuladorCarreira) funciona com RelatorioQuadro e com
RelatorioTempoMedioNoPosto"""
 # ==== Dados mínimos de militares para a simulação ====
 posto_tenente = Posto(TipoPosto.TENENTE, tempo_minimo=3, tempo_maximo=8, idade_limite=60)
 posto_capitao = Posto(TipoPosto.CAPITAO, tempo_minimo=4, tempo_maximo=10, idade_limite=62)

 historico_m1 = [
 HistoricoPosto(posto_tenente, date(2018, 1, 1), date(2022, 12, 31)),
 HistoricoPosto(posto_capitao, date(2023, 1, 1), None),
]

 historico_m2 = [HistoricoPosto(posto_tenente, date(2020, 1, 1), None),]

 m1 = Oficial(nim=1, nome="Oficial 1",d ata_nascimento=date(1985, 5, 10),
quadro=QuadroEspecial.INFANTARIA, historico=historico_m1,
)

 m2 = Oficial(nim=2, nome="Oficial 2", data_nascimento=date(1987, 8, 20),
quadro=QuadroEspecial.INFANTARIA, historico=historico_m2,)

 militares = {1: m1, 2: m2}
 # ==== Infraestrutura mínima de gestão / simulação ====
 gestor_quadros = GestorQuadros()
 criterio = CriterioOrdenacaoElegiveisPorDefeito()
 gestor_carreiras = GestorCarreiras(gestor_quadros=gestor_quadros,
 criterio_ordenacao=criterio)

 # --- 1) Simulação com RelatorioQuadro (baseline) ---
 relatorio_quadro = RelatorioQuadro(quadro=QuadroEspecial.INFANTARIA, ano_inicial=2024,
ano_final=2026,)

 simulador_quadro = SimuladorCarreira(ano_corrente=2024, militares=militares,
gestor_carreiras=gestor_carreiras, relatorio_corrente=relatorio_quadro,)

 relatorio_resultado_quadro = simulador_quadro.simular_quadro(
 quadro=QuadroEspecial.INFANTARIA,
 anos=2,
)
 texto_quadro = relatorio_resultado_quadro.gerar_texto().lower()

 self.assertIn("promocoes", texto_quadro)
 self.assertIn("reservas", texto_quadro)

 # --- 2) Mesma simulação com RelatorioTempoMedioNoPosto (evolução) ---
 relatorio_tempo_medio = RelatorioTempoMedioNoPosto(quadro=QuadroEspecial.INFANTARIA,
historicos_por_nim={1: historico_m1, 2: historico_m2}, ano_inicial=2024, ano_final=2026,)

 simulador_tempo_medio = SimuladorCarreira(ano_corrente=2024, militares=militares,
gestor_carreiras=gestor_carreiras, relatorio_corrente=relatorio_tempo_medio,)

 relatorio_resultado_tempo_medio = simulador_tempo_medio.simular_quadro(
 quadro=QuadroEspecial.INFANTARIA,
 anos=2,
)
 texto_tempo_medio = relatorio_resultado_tempo_medio.gerar_texto().lower()

 # Mesmo contrato base: continua a falar de promoções/reservas
 self.assertIn("promocoes", texto_tempo_medio)
 self.assertIn("reservas", texto_tempo_medio)

 # Extensão (OCP) + LSP: acrescenta info de tempo médio sem quebrar o fluxo
 self.assertIn("tempo medio", texto_tempo_medio)

