ADLERTA '

Licenciatura em Eng. Informatica
Programacao por Objetos 25/26

Proposta de projeto

Simulador de Carreiras

Diagrama de classes

o simulador:

(© controladorSimulacaa

o gestor_quadros: GestorQuadros
0 gestor_carreiras: GestorCarreiras

muladorCarreira

o repositorio: RepasitorioDados

® iniciar_simulacao_guadroiquad
o iniciar_simulacao_individual(nim:

@ carregar_dados(

nos: int): RelatorioQuadro
idual

s()
= exportar_resultadofrelatorio: RelatorioSimulacao, formato: str)

(B Relatoriosimulacao
> ana_inicial: int
> ano_final: int
o eventos: List<EventoCarmreira>
o registar_eventofevento: EventoCarreira)

« gerar_texto(): str
o exportar._json(): str
o anos_simulados(): int

(© RelatoricQuadra
5 quadro: Quadrospecial
< promocoes_por_ano: Dict<int, Dict<TipoPosto, int>>
o reservas_por_aa: Dict<int, int>

(©) Reltorioindividual (©) RelatarioTempoMediaNoPosto

-nimn: | © quadro: QuadroEspedial

o tempo_medio_par_posta: Dict<TipoPosto, float>

(© simuladorCarreira

o ano_corrente: int
o data_tick: date

itorioDac
o militares: Dict<int, Militar> (©) RepositorioDados

© gestor_carreiras: GestorCarrei

ra:
o relatorio_corrente: RelatorioSimulacao it, Militar>

arregar_militares(): Dict
o carregar_postos(): Dict<TipaPosto, Posto>

» simular_quadro{quadro: QuadroEspecial, anos: int): RelatorioQuadro.
» simular_militar(nim: int}: Relatorioindividual

» carregar_parametros(): Dict
= guardar Telatorio{relatorio: RelatorioSimulacao, caminho: str)

w tick_anual()
& processar_promocoes()
& processar_reservas()

o gestor_quadros: GestarQuadros
o criterid_ardenacao: CriterioOrdenacaoElegiveis

(©) GestorCarreiras

o elegivel_para_promocao(m:
® executar_promocao(m: Militar, novo_posto:
o executar_reserva(m: Militar, data_reserva: date): Event
s selecionar_elegiveis{mil

= processar_promocoes_quadrola: QuadroEspecial, p: TipoPosto, miltares: List<Miltar>, data _tick: date): List<EventoCarreira>

(R)EventoCarreira

litar, data_tick: date): bool
Posto, data_tick: date): EventoCarreira
oCal

ist<Militar>

ares: List<Militar>, data_tick: date):

A @) mititar

o nim: int
© name: str

© data_nascimento: date

© quadro: QuadroEspecial

© historico: Ust<HistoricoPosto>
> _na_reserva: bool

© Gestorquadros
o vagas_por_guadro: Dict<QuadroEspecial, Dict=<TipoPosto, VagasPosto=>

o militares_por_posto_final: Dict<TipoPasto, int>
tot

s {override} registar_evento{evento: EventoCarreira)
{override} gerar_téxto(): str

{override} exportar_jsan(): str

s calcular_estatisticas(): Dict

o timeline_eventos: List<EventoCameira=
© data_reserva_prevista: date
5 posto_finak: TipoPosto

« {override} registar_eventa(evento: EventoCarreira)
o {override} gerar_textol): str

o {override} exportar_json(): str

o gerar_timelinef): str

Legenda:

—> Herancga
—& Composicao

5 ano: int
o data: date
o tipo: str
o militar_nim:
o validar(): bool

o total_militares_considerados:
o total_militares ignaradas: int
= {override} registar_evento(evento: EventoCarreira)
o {override} gerar_texto{): str

o ade_emidata_ref: date): int
» tempo_no_posto_emidata_ref: date}: float
= promoverinovo_posto: Posto, i0: date)
 passar_reserva(data_reserva: date)

o posto_atual(): Posto

« definir_vagas(q: QuadroEspecial, p: TipoPosto, total: int)
& vagas_Jivres(a: QuadroEspecial, p: TipoPosto): int
o reservar_vaga(q: QuadroEspecial, p: TipoPosto): bool
o libertar_vaga(q: QuadraEspecial, p: TipoPasto)
ial, p: TipoPosto): bool

]

{override } exportar_json(): str
o calcular_tempo_medio(): Dict<TipoPosto, float>

= esta_na_reserva(): bool

o calcular Idade_limite(: int
o eh_elegivel_promocao(data_ref: date): bool
o categoria): str

© oficial

(©) Historicoposta
o formacao_academica: str

Quadros

(©) EventoPromocao [G)

o :;:}:;‘;:;_ "‘;:‘si: o pasto_final: TipoPosto

= {overrde} validar(

© {override} validar(): bool

ool

© anos_comando: int

@ Sargento

o especialidade: str
o cursos_tecnicos: List<str>

o posto_final: TipoPosto
© motivo_abate: str

o {override} validar(): bool

X date
© data_fim: date?

« fechar(data_fim: date)
» esta_ativol(): bool

o {override} calcular_idade_limite(): int
o {override} eh_elegivel_promocao(data_ref: date): bool
o {override} categoria(): str

o tem_formacao_requerida(): bool

o {override} calcular_idade_limite(): int
o {override} eh_clegivel promocaoidata_ref: date): bool
« {override} categoria(): str

& tem_cursos_requeridos(): bool

(© praca

o especialidade: str
o tipo_contrato; str
o anos_servico: int

» {override) calcular_idade_limite{}: int
« {override} eh_elegivel promacao(data_ref: date): baol
= {overnde} categorial): str

limite:

o tempo,
o idade |

AbE RTA | Licenciatura em Eng. Informatica

Programacgéo por Objetos 25/26

Prototipos em Python

from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import date

from typing import List, Optional

@dataclass

class Posto:
"""Objeto simples que representa um posto militar.
nome: str
idade_limite: int

@dataclass
class HistoricoPosto:
"""Elemento do histérico (COMPOSIGCAO dentro de Militar)."""
posto: Posto
data_inicio: date
data_fim: Optional[date] = None

def fechar(self, quando: date) -> None:
"""Fecha o periodo num posto."""
self.data_fim = quando

Militar (ABC):

Superclasse abstrata. Define o CONTRATO que as subclasses tém de implementar.
def __init_ (self, nim: int, nome: str, data_nascimento: date) -> None:
self.nim = nim

self.nome = nome

self.data_nascimento = data_nascimento

COMPOSICAO: o Militar "tem" um histérico de postos

self.historico: List[HistoricoPosto] = []

de

Y

idade_em(self, ref: date) -> int:
"""Calcula a idade do militar (em anos) numa dada data de referéncia.
return ref.year - self.data_nascimento.year

de

3

posto_atual(self) -> Optional[Posto]:
"""Devolve o posto atual, se existir algum registado no histérico.
return self.historico[-1].posto if self.historico else None

mover(self, novo_posto: Posto, quando: date) -> None:
Regista mudan¢a de posto no histérico (usa a composicdo).
if self.historico:

self.historico[-1].fechar(quando)
self.historico.append(HistoricoPosto(novo_posto, quando))

CONTRATO: métodos que TODAS as subclasses devem concretizar

@abstractmethod

def calcular_idade_limite(self) -> int:
“""Devolve a idade-limite (em anos) para este militar. A implementacdo concreta deve calcular a idade-limite em funcdo
do posto atual e da categoria (por exemplo, Oficial ou Sargento). Pré-condi¢do: o militar tem um posto atual valido."""

@abstractmethod
def categoria(self) -> str:
"""Identifica a categoria do militar (por exemplo, 'Oficial' ou 'Sargento'). Este valor é usado pelo cédigo cliente para tratar objetos Militar de
forma polimérfica, sem testar explicitamente o tipo concreto com isinstance ou comparac¢des de classe."""

Oficial(Militar):

Subclasse concreta que HERDA de Militar."
OVERRIDE: concretiza o contrato definir idade Limite
def calcular_idade_limite(self) -> int:

posto = self.posto_atual()

return posto.idade_limite if posto else 66

OVERRIDE: concretiza o contrato definir categoria
def categoria(self) -> str:
return "Oficial”

clas:

Sargento(Militar):
Outra subclasse concreta.

def calcular_idade_limite(self) -> int: # override
return 58

de-

2

categoria(self) -> str: # override
return "Sargento"

EXEMPLOS DE CRIACAO E USO

if __name__ == main__":

hoje = date(2030, 1, 1)

Criar alguns postos

aspirante = Posto("Aspirante”, idade_limite=56)
alferes = Posto("Alferes”, idade_limite=60)
sargento2 = Posto("22 Sargento”, idade_limite=60)

HERANCA: Oficial e Sargento sdo ambos Militar
mi: Militar = Oficial(1001, "Ana", date(1990, 5, 10))
m2: Militar = Sargento(1602, "Bruno", date(1988, 7, 20))
COMPOSICAO: adicionar elementos ao histérico
ml.promover(aspirante, date(2620, 1, 1))
ml.promover(alferes, date(2025, 1, 1))
m2.promover(sargento2, date(2022, 1, 1))

POLIMORFISMO + OVERRIDE:
Chamadas passam sempre pelo mesmo contrato de Militar,
mas cada subclasse responde de forma especifica.
for m in (m1, m2):
print(f"{m.nome} ({m.categoria()})")
print(" Posto atual:", m.posto_atual().nome)
print(" Idade em 2630:", m.idade_em(hoje))
print(” Idade limite:", m.calcular_idade_limite())
print()

Simulador de Carreiras

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Cenarios de Evolugao
Cenario A: Violacao do Principio Abertas/Fechadas

Descrigdo: Um dia podemos querer introduzir uma forma de ordenagao dos militares elegiveis (por exemplo,
deixar de ser s6 antiguidade e passar a uma ponderagdo do mérito).

Para implementar isto na forma atual, teriamos de modificar o método de selegdo/ordenacdo em GestorCarreiras,
introduzindo novos ramos (if por categoria/quadro), violando o principio abertas/fechadas. Uma forma de mitigar
esta violagéo do principio abertas/fechadas seria extrair a légica de ordenagéao dos elegiveis para uma estratégia
configuravel (por exemplo, uma classe ou fungéo de “politica de ordenagao”), permitindo acrescentar novos
critérios sem alterar o cédigo interno do GestorCarreiras.

Avaliacao de plausibilidade: ALTA — Em sistemas de gestao de carreiras militares, as regras de ordenagao para
promogdes nem sempre sdo estaticas e variam entre categorias.

Cenario B: Respeito do Principio Abertas/Fechadas
Descrigdo: Um dia podemos querer comegar a simular a carreira de um militar da categoria de Pragas.

Para implementar isto na forma atual, basta concretizar a subclasse Praca (ja prevista na hierarquia Militar),
definindo os seus atributos especificos e as implementagbes de calcular_idade_limite() e
eh_elegivel_promocao(). O restante cddigo continua a trabalhar apenas com o tipo base Militar (listas de militares,
selegéao de elegiveis, relatérios), sem qualquer alteragao as superclasses.

Avaliagdo de plausibilidade: ALTA - E muito provavel que um simulador de carreiras militares venha a ser
estendido as Pragas, pois sdo essenciais para o dimensionamento global dos efetivos e para o planeamento a
médio prazo.

Cenario A: Violacao do Principio de Substitui¢cao de Liskov (LSP)

Descrigdo: Um dia podemos querer introduzir um relatério RelatoriofempoMedioNoPosto, como subclasse de
RelatorioSimulacao, que calcula o tempo médio de permanéncia em cada posto.

Para introduzir esta métrica, a implementagdo do relatério passa a assumir que todos os Militar tém o
HistoricoPosto completo desde o inicio da carreira. Sempre que, ao processar os eventos da simulagdo ou ao gerar
o texto, o relatério deteta um militar com histérico incompleto, langa uma excegéo ou aborta o calculo, tratando
esse caso como um estado invalido do sistema. No entanto, o contrato original de RelatorioSimulacao ndo exigia
histérico completo e funcionava de forma robusta com dados parciais. Desta forma, por passar a depender de
uma pré-condigdo mais forte, quebra-se a substituibilidade: o cddigo passa a poder falhar inesperadamente
quando recebe um RelatorioTempoMedioNoPosto, apesar de usar a mesma interface.

Plausibilidade: ALTA - Em contextos de planeamento de efetivos e gestdo de carreiras € muito comum querer
introduzir métricas mais sofisticadas, como o tempo médio de permanéncia no posto, a partir de dados histéricos.

Cenario B: Respeito do Principio de Substituicado de Liskov (LSP)

Descrigdo: Um dia podemos querer introduzir um novo tipo de evento, EventoAbateAosQuadros, como subclasse
de EventoCarreira, para representar a situagdo em que o militar é abatido aos quadros.

Esta subclasse acrescenta apenas campos especificos (por exemplo, motivo_abate e posto_final) e implementa
validar() de forma semelhante as outras subclasses, verificando apenas a consisténcia interna dos seus proprios
dados (datas validas, posto final definido). Os relatdrios existentes que apenas contabilizam promogdes e
reservas continuam a funcionar, pois tratam a lista de EventoCarreira de forma genérica e podem simplesmente
ignorar eventos de tipo “ABATE_AOS_QUADROS” ou trata-los como mais um tipo terminal de carreira. Destaforma,
qualquer cddigo que opera sobre EventoCarreira pode receber instancias de EventoAbateAosQuadros sem falhas
inesperadas, preservando a substituibilidade e respeitando o LSP.

Plausibilidade: ALTA - Em sistemas de gestéo de carreiras militares é comum distinguir entre passagem a reserva,
e outras saidas resultantes da atricdo no decorrer do servigo, o que é designado por abate aos quadros.

Simulador de Carreiras

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Tabela de Decisoes

Situacao de Duvida Justificagcéao Aplicacgao do Principio
Abertas/Fechadas
Usar uma classe abstrata Militar O estado e os métodos de carreira (NIM, RESPEITA - O Cenario B (passara
com subclasses Oficial, Sargento | quadro, histérico, promogéo, reserva) sdo simular Pragas) faz-se apenas
e Praca, emvez de um Unico comuns; as diferengas estatutarias ficam concretizando a subclasse Praca,
Militar com campo “categoria”? nas subclasses através de override. Evita if sem alterar Militar nem o simulador.
categoria espalhados.
Definir eh_elegivel_promocao() Cada categoria conhece as suas proprias RESPEITA - Novas regras para uma
como abstrato em Militar ou regras legais (idade limite, tempos categoria obrigam apenas a mexer na
centralizar toda a légica em minimos/maximos), que variam entre respetiva subclasse de Militar; a
GestorCarreiras com ramos por Oficiais e Sargentos e Pracgas. infraestrutura (GestorCarreiras,
categoria/quadro? GestorCarreiras foca-se s em vagas e SimuladorCarreira) permanece
ordenagéo, chamando o método fechada.
polimérfico.
Guardar apenas postoAtual em O histérico € um componente natural do RESPEITA - Novos relatérios ou
Militar ou usar composigao Militar, mas com ciclo de vida dependente estatisticas sobre “tempo em cada
Militar *-- HistoricoPosto com dele. HistoricoPosto concentra datas de posto” usam o histérico sem alterar
lista de periodos? inicio/fim e permite calcular tempos e Militar; acrescentam apenas
trajetdrias sem encher Militar de campos. operagodes de leitura/célculo sobre a
lista de HistoricoPosto.
Manter RelatorioQuadro e RelatorioSimulacao define o contrato RESPEITA - Novos relatérios (por tipo
Relatoriolndividual comum (registar_evento, gerar_texto, de promogao, por idade de saida,
independentes ou introduzir exportar_json) e reaproveita a composigdo etc.) nascem como novas subclasses
superclasse abstrata com EventoCarreira. Cada relatério s6 de RelatorioSimulacao, sem
RelatorioSimulacao com especializa a forma de agregar e apresentar. | alteragOes ao simulador, que
métodos abstratos e override? continua a depender apenas da
abstracao.
Introduzir uma superclasse O significado e os dados relevantes de uma RESPEITA - Novos tipos de evento
abstrata EventoCarreira com promogéo (posto de origem/destino, (reclassificagao, regresséo,
duas subclasses impacto em vagas) sdo diferentes de uma passagem a disponibilidade, etc.)
(EventoPromocao e passagem a reserva (fecho de carreira, podem ser acrescentados como
EventoReserva), em vez de um impacto definitivo no quadro). Separar em novas subclasses de EventoCarreira,
Unico EventoCarreira com campo | subclasses permite encapsular validagdes sem alterar GestorCarreiras nem
“tipo”. e efeitos especificos sem encher RelatorioSimulacao, que continuam a
EventoCarreira de if tipo, mantendo cada depender apenas da abstracgéo.
classe com invariantes mais simples.
Calcular estatisticas diretamente | EventoCarreira regista de forma genérica RESPEITA - Novos tipos de evento ou
sobre listas de Militar ou usar promogdes e passagens a reserva, relatérios especificos podem ser
composigao RelatorioSimulacao | independente da categoria. Os relatérios introduzidos por extensao (novas
*-- EventoCarreira e trabalhar apenas consomem estes eventos, sem ter subclasses de
sobre eventos? de conhecer a estrutura interna de Militar. EventoCarreira/RelatorioSimulacao).
A Unica futura violagédo prevista esta
na forma de ordenacgéo dos elegiveis
em GestorCarreiras (Cenario A).
Situacao de Duvida Justificagao Aplicagao do LSP / Acao Tomada
- o . . Calcular a média apenas para
Como introduzir Amétrica d.e tempo médio exige mais militares com dados suficientes e
. . dados, e existe de quebrar a L '
RelatorioTempoMedioNoPosto - sinalizar/ignorar os restantes, sem
sem violar o LSP? su,stental?ll[dade por haver L.Im refor(;o de reforgar as pré-condigdes da
pré-condicéo face a RelatorioSimulacao
superclasse.
Manter o contrato flexivel; se for
O relatodrio pode assumir RelatorioSimulacao funciona com necessario histérico completo,
HistoricoPosto completo para histéricos parciais (snapshots, testes); validar isso numa fase anterior
todos os militares? exigir completude reforga a pré-condicao. (carregamento/controlo), ndo na
subclasse.
Carregar dados via
Onde tratar os dados historicos Se o relatério fizer I/0 nos métodos, RepositorioDados/fabricas antes da
adicionais (BD/ficheiros) introduz falhas externas numa hierarquia simulagao; os relatérios operam
usados nas estatisticas? que era puramente em memoaria apenas sobre o estado ja carregado
em memoria
Definir EventoAbateAosQuadros
Como introduzir E um novo tipo de fim de carreira; relatérios como subclasse com campos e
EventoAbateAosQuadros na antigos ndo o conhecem e ndo devem falhar | validar() préprios; relatérios genéricos
hierarquia EventoCarreira? por causa disso podem trata-lo como EventoCarreira
normal ou ignora-lo explicitamente

Simulador de Carreiras

ADERTA =

Licenciatura em Eng. Informatica
Programacao por Objetos 25/26

Lista de testes (U-Unitarios e de I-Integracao)

. Como permite testar um
ID |Tipo Resumo p o
principio SOLID
. . - Testa LSP - o novo relatorio
RelatoriolempoMedioNoPosto com militares com . .
. . . - ~ continua a aceitar os mesmos
TU1 U |HistoricoPosto incompleto ndo lanca excegéo e .
. L estados que RelatorioSimulacao,
ignora/sinaliza esses casos . .
sem reforgar pré-condigoes
Testa LSP -valida que a
RelatorioTempoMedioNoPosto usado através de uma |subclasse pode ser usada como
TU2 U |referéncia RelatorioSimulacao gera texto valido sem um RelatorioSimulacao genérico,
coédigo especial sem if de tipo nem adaptacoes
no cliente
RelatorioTempoMedioNoPosto.registar_evento() Testa LSP/OCP - garante que a
processa EventoPromocao e EventoReserva subclasse estende o
Tus | U mantendo as mesmas invariantes de comportamento dos relatorios
RelatorioSimulacao (eventos contados, anos (enriquece com tempo médio)
simulados) e apenas acrescenta estatisticas de tempo | sem alterar o contrato base nem
médio. quebrar codigo existente
Testa LSP - confirma que o novo
EventoAbateAosQuadros.validar() verifica apenas a subtipo de EventoCarreira
TU4 U |consisténciainterna (datas, motivo, posto_final) tal respeita o mesmo contrato de
como outros eventos validacdo, sem novas falhas ou
efeitos laterais
ControladorSimulacao executa a simulagdo primeiro | Testa OCP + LSP —demonstra que
com RelatorioQuadro e depois com é possivel adicionar um novo tipo
RelatoriolempoMedioNoPosto, sem alteragdes ao de relatdrio estendendo
T I controlador RelatorioSimulacao sem
modificar o controlador e
mantendo a substituibilidade
pela mesma interface
Testa LSP -valida que
. L. - ~ EventoAbateAosQuadros se
Sistema com varios militares (promogoes, reservase |, . .
- - integra na hierarquia
Ti2 I abates aos quadros) gera relatorios existentes sem .
e EventoCarreira sem quebrar
falhas nem branches especificos L. . L
relatérios antigos nem exigir if por
tipo de evento

Simulador de Carreiras

AbE RTA B Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Relatdrio de evolugao

Incoeréncia identificada: A analise dos cenarios de evolugdo mostrou que a introdugéo
de RelatorioTempoMedioNoPosto como subclasse de RelatorioSimulacao podia violar o
LSP. Enquanto RelatorioQuadro e Relatoriolndividual funcionam bem com histéricos
parciais (apenas parte da carreira, dados de teste, etc.), a primeira ideia para
RelatorioTempoMedioNoPosto assumia que todos os Militar tinham HistoricoPosto
completo. Com dados incompletos, o relatério podia falhar o calculo ou langar excegoes
em gerar_texto(), reforcando pré-condigcbes face a superclasse e quebrando a
substituibilidade.

Consequéncia no projeto: Se isso ndo fosse tratado, teriamos:

1. Cddigo cliente que usa RelatorioSimulacao a falhar inesperadamente quando recebe
RelatorioTempoMedioNoPosto;

2. Testes frageis, obrigados a fabricar historicos “perfeitos” s6 para esta subclasse;

3. Uma hierarquia onde uma subclasse exige mais do que a superclasse, contrariando o
LSP.

Decisao tomada (refatoracao): Para respeitar o LSP sem reescrever o sistema todo de
dados, decidiu-se:

1. RelatoriofempoMedioNoPosto nao lanca excegbes por causa de histéricos
incompletos;

2. Militares sem dados suficientes sdo contados como “ignorados” nas estatisticas, mas
o relatdrio é sempre gerado;

3. O contrato de RelatorioSimulacao é mantido: registar_evento() + gerar_texto()
funcionam com os mesmos eventos e estados que nas outras subclasses.

Principios de design envolvidos
LSP (principal)

v" Na&o ha pré-condicbes reforgadas: o novo relatério aceita os mesmos dados que os
restantes;

v Nao ha pds-condigcbes enfraquecidas: continua a devolver sempre um texto de
relatdrio valido;

v O cbdigo cliente pode tratar RelatorioTfempoMedioNoPosto como um
RelatorioSimulacao genérico, sem if por tipo.

OCP (secundario)

v" Foi possivel acrescentar um novo relatorio com métricas de tempo médio sem alterar
RelatorioSimulacao nem o SimuladorCarreira;
v O comportamento base é mantido, apenas enriquecido com estatisticas adicionais.

DIP (implicito)

O relatério trabalha sobre abstragbes de dominio (EventoCarreira, HistoricoPosto),
deixando o carregamento/limpeza de dados para outras camadas, o que facilita testes e
respeita a separagao de responsabilidades.

Simulador de Carreiras

AbE RTA | Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Cadigo de dois testes

TU1 - RelatorioTempoMedioNoPosto com militares com HistoricoPosto incompleto

import unittest

from datetime import date

from projeto.dominio import Posto, HistoricoPosto, TipoPosto, QuadroEspecial
from projeto.relatorios import RelatorioQuadro, RelatorioTempoMedioNoPosto
from projeto.eventos import EventoPromocao

class TestRelatorioTempoMedioNoPostoTUl(unittest.TestCase):
def test_relatorios_substituiveis_com_historico_incompleto(self):
"""TUl - RelatorioTempoMedioNoPosto com histérico incompleto ndo reforga
pré-condi¢des face a RelatorioSimulacao."""

Historico "completo" para o militar 1

posto_tenente = Posto(TipoPosto.TENENTE, tempo_minimo=3, tempo_maximo=8,
idade_limite=60)

posto_capitao = Posto(TipoPosto.CAPITAO, tempo_minimo=4, tempo_maximo=10,
idade_limite=62)

historico_ml = [
HistoricoPosto(posto_tenente, date(2020, 1, 1), date(2023, 1, 1)),
HistoricoPosto(posto_capitao, date(2623, 1, 2), None),

]

Historico "incompleto/defeituoso” para o militar 2
historico_m2 = [

HistoricoPosto(posto_tenente, None, None), # datas em falta de propdsito
]

historicos_por_nim = {
1: historico_mil,
2: historico_m2,

}

eventos = [
EventoPromocao(militar_nim=1, posto_origem=TipoPosto.TENENTE,
posto_destino=TipoPosto.CAPITAO),
EventoPromocao(militar_nim=2, posto_origem=TipoPosto.TENENTE,
posto_destino=TipoPosto.CAPITAO),

]

Baseline: RelatorioQuadro (tipo jd existente na hierarquia)
relatorio_quadro = RelatorioQuadro(
quadro=QuadroEspecial.INFANTARIA,
ano_inicial=2620,
ano_final=2624,
)
for e in eventos:
relatorio_quadro.registar_evento(e)
texto_quadro = relatorio_quadro.gerar_texto()
self.assertIn("total”, texto_quadro.lower())

Novo subtipo: RelatorioTempoMedioNoPosto
relatorio_tempo_medio = RelatorioTempoMedioNoPosto(
quadro=QuadroEspecial.INFANTARIA,
historicos_por_nim=historicos_por_nim,
ano_inicial=2620,
ano_final=2024,

)

Act - usar o mesmo padrdo de utilizag¢do que para qualquer RelatorioSimulacao
for e in eventos:
relatorio_tempo_medio.registar_evento(e)

Ndo deve lang¢ar exceg¢do ao gerar o texto, apesar do histdrico incompleto
texto_tempo_medio = relatorio_tempo_medio.gerar_texto()

Invariantes: continua a haver um relatorio de texto vdlido
self.assertIsInstance(texto_tempo_medio, str)

E a lLoégica interna deve conseguir distinguir pelo menos um “ignorado”
self.assertGreatertEqual(relatorio_tempo_medio.total_militares_ignorados, 1)

Simulador de Carreiras

AbE RTA | Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

TI1 - Mesmo fluxo com RelatorioQuadro e RelatorioTempoMedioNoPosto

import unittest
from datetime import date

from projeto.dominio import (Posto,HistoricoPosto,TipoPosto,QuadroEspecial,Oficial)

from projeto.relatorios import RelatorioQuadro, RelatorioTempoMedioNoPosto

from projeto.gestao import GestorQuadros, GestorCarreiras, CriterioOrdenacaoElegiveisPorDefeito
from projeto.simulacao import SimuladorCarreira

class TestSimulacaoComRelatoriosTI1l(unittest.TestCase):
def test_mesmo_fluxo_com_dois_tipos_de_relatorio(self):
"""TI1 - O mesmo fluxo de simula¢do (SimuladorCarreira) funciona com RelatorioQuadro e com
RelatorioTempoMedioNoPosto"""
==== Dados minimos de militares para a simula¢cdo ====
posto_tenente = Posto(TipoPosto.TENENTE, tempo_minimo=3, tempo_maximo=8, idade_limite=60)
posto_capitao = Posto(TipoPosto.CAPITAO, tempo_minimo=4, tempo_maximo=10, idade_limite=62)

historico_ml = [
HistoricoPosto(posto_tenente, date(2018, 1, 1), date(2022, 12, 31)),
HistoricoPosto(posto_capitao, date(2623, 1, 1), None),

1
historico_m2 = [HistoricoPosto(posto_tenente, date(2620, 1, 1), None),]

ml = Oficial(nim=1, nome="0Oficial 1",d ata_nascimento=date(1985, 5, 10),
quadro=QuadroEspecial.INFANTARIA, historico=historico_mi,

)

m2 = Oficial(nim=2, nome="0Oficial 2", data_nascimento=date(1987, 8, 20),
quadro=QuadroEspecial.INFANTARIA, historico=historico_m2,)

militares = {1: ml1, 2: m2}
==== Infraestrutura minima de gestdo / simula¢do ====
gestor_quadros = GestorQuadros()
criterio = CriterioOrdenacaoElegiveisPorDefeito()
gestor_carreiras = GestorCarreiras(gestor_quadros=gestor_quadros,
criterio_ordenacao=criterio)

--- 1) Simulag¢do com RelatorioQuadro (baseline) ---
relatorio_quadro = RelatorioQuadro(quadro=QuadroEspecial.INFANTARIA, ano_inicial=2624,
ano_final=2026,)

simulador_quadro = SimuladorCarreira(ano_corrente=2024, militares=militares,
gestor_carreiras=gestor_carreiras, relatorio_corrente=relatorio_quadro,)

relatorio_resultado_quadro = simulador_quadro.simular_quadro(
quadro=QuadroEspecial.INFANTARIA,
anos=2,

)

texto_quadro = relatorio_resultado_quadro.gerar_texto().lower()

self.assertIn(“promocoes”, texto_quadro)
self.assertIn("reservas”, texto_quadro)

--- 2) Mesma simulag¢do com RelatorioTempoMedioNoPosto (evolugdo) ---
relatorio_tempo_medio = RelatorioTempoMedioNoPosto(quadro=QuadroEspecial.INFANTARIA,
historicos_por_nim={1: historico_ml, 2: historico_m2}, ano_inicial=2624, ano_final=2026,)

simulador_tempo_medio = SimuladorCarreira(ano_corrente=2024, militares=militares,
gestor_carreiras=gestor_carreiras, relatorio_corrente=relatorio_tempo_medio,)

relatorio_resultado_tempo_medio = simulador_tempo_medio.simular_quadro(
quadro=QuadroEspecial.INFANTARIA,
anos=2,

)

texto_tempo_medio = relatorio_resultado_tempo_medio.gerar_texto().lower()

Mesmo contrato base: continua a falar de promo¢des/reservas
self.assertIn("promocoes"”, texto_tempo_medio)
self.assertIn("reservas"”, texto_tempo_medio)

Extensdo (OCP) + LSP: acrescenta info de tempo médio sem quebrar o fluxo
self.assertIn("tempo medio"”, texto_tempo_medio)

Simulador de Carreiras

