

CONCEITOS FUNDAMENTAIS DE QUÍMICA AVALIAÇÃO FEVEREIRO 2016 – PISTAS DE RESOLUÇÃO

GRUPO 1

Escreva as suas respostas na folha de ponto

1.	A coexistência das fases sólida, líquida e gasosa ocorre no:							
	A.	Ponto de sub	olimação.	D.	Ponto de congel	ação.		
	В.	Ponto triplo.		E.	Ponto de fusão.			
	C.	Ponto de ebulição.						
2.	Considere as seguintes substâncias isoeletrónicas e indique qual o que apresenta um menor raio							
	A.	0^{2-} .		D.	Na^+ .			
	В.	F^- .		E.	Mg^{2+} .			
	C.	Ne						
3.	Considere uma mole de CH_4 (g) nas condições padrão de pressão e temperatura. Qual ou quais das seguintes afirmações são verdadeiras?							
		I.	A amostra ocupa 22,4 1.			p-fólio		
		II.	A amostra tem uma massa de 16g	g.		1		
		III.	A amostra é constituída por 6,02	3×10^2	²³ moléculas.			
	A.	Apenas I.						
	В.	Apenas III.						
	C.	I. e II						
	D.	Todas as afirmações						
4.	Qual o tipo de ligações que existem numa amostra de $H_2O(l)$?							
	A.	Apenas ligaç						
	В.	. Apenas ligações covalentes não polares.				p-fólio		
	c.	Ligações iónicas e ligações polares por pontes de hidrogénio.						
	D.	Ligações covalentes polares e ligações por pontes de hidrogénio.						
	E.	Ligações metálicas e ligações iónicas.						

5.	Considere a reação do ácido clorídrico - $HCl(aq)$ – com Zinco – $Zn(s)$ – dá origem aos seguintes
pro	odutos:

A. água e um sal.

D. um óxido não metálico.

E. um óxido metálico.

p-fólio

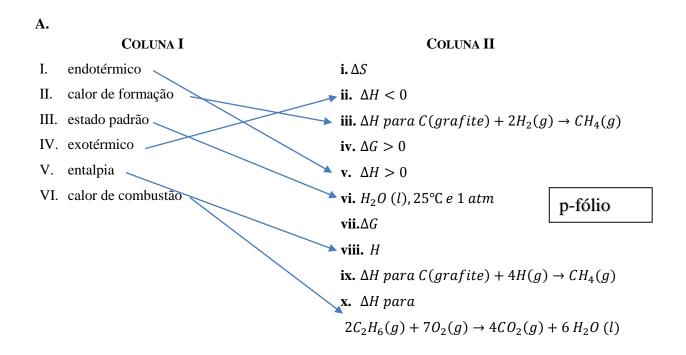
- B. um ácido e uma base.
- **C.** um sal e hidrogénio gasoso.
- **6.** Qual o objetivo de uma ponte salina numa célula eletroquímica?
 - A. Permite a migração de iões.

D. Impede a migração de iões

p-fólio

- **B.** Permite a migração de neutrões.
- E. Impede a migração de neutrões.

- **C.** Permite a migração de eletrões.
- 7. Uma solução saturada de sulfato de cálcio é preparada a partir da dissolução de $CaSO_4$ (s). Sabendo que a concentração do ião Ca^{2+} é igual a 3,0 × $10^{-3}M$, o valor do produto de solubilidade K_{ps} é
 - **A.** 6.0×10^{-6}


D. 9.0×10^{-3}

B. 9.0×10^{-6}

E. 3.0×10^{-3}

- **C.** 6.0×10^{-3}
- 8. A termodinâmica pode ser usada para determinar todos os seguintes, EXCETO
 - A. o sentido em que uma reação é espontânea.
 - **B.** a extensão a que uma reação ocorre.
 - **C.** a velocidade da reação.
 - **D.** a temperatura em que uma reação é espontânea.
 - E. a variação da entalpia de uma reação.
- 9. Todas as afirmações seguintes a respeito da entropia são verdadeiras, EXCETO
 - A. a entropia é zero para substâncias simples nas condições padrão.
 - **B.** a entropia é uma função de estado.
 - **C.** uma variação positiva na entropia indica uma mudança para uma desordem maior.
 - **D.** os valores da entropia são maiores ou iguais a zero.
 - **E.** a entropia de uma substância na fase gasosa é maior do que em fase sólida.

GRUPO 2

GRUPO 3 (APRESENTE TODOS OS CÁLCULOS QUE EFETUAR)

1. A concentração de etanol nas bebidas alcoólicas, nomeadamente no vinho, é expressa pela sua graduação, em que 1° de álcool corresponde a 1 ml de álcool puro por cada 100 ml de vinho. Sabendo que a densidade do etanol, é $0.8g/cm^3$ calcule a concentração de álcool – expressa em g/l – de um vinho que apresenta uma graduação de 12° .

12° corresponde a 12 ml de etanol por cada 100 ml de vinho. Fazendo uso da densidade 12 ml etanol correspondem a 9,6g de etanol/ 100ml de vinho, ou seja 96g etanol/1litor de vinho

$$\frac{12 \ ml \ etanol}{100ml \ de \ vinho} \times \frac{1000ml \ vinho}{1l \ vinho} \times \frac{0.8 \ g \ de \ etanol}{1 \ ml \ de \ etanol} = 96 \ g \ etanol \ / litro \ de \ vinho$$

2. Analise a influência da pressão, concentração e temperatura no processo de produção industrial de amoníaco, a partir dos seus elementos, e que é representado pela seguinte equação:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 21.8 kcal$$

A análise da influência da pressão, concentração e temperatura é feita com base na aplicação do Princípio de Le Chatelier. Assim:

p-fólio

Pressão – de acordo com a equação 1 mol de azoto combina com 3 moles de hidrogénio para formar 2 mol de amoníaco. O aumento de pressão vai deslocar o equilíbrio no sentido do menor volume, o que neste caso é no sentido direto ou seja da produção de amoníaco, já que temos 4 moles do lado dos reagentes e apenas 2 moles do lado dos produtos.

Concentração – a diminuição da concentração de amoníaco vai deslocar o equilíbrio no sentido da produção ou seja no sentido direto.

Temperatura – tratando-se de um processo exotérmico, uma diminuição de temperatura vai deslocar o equilíbrio para a esquerda, sentido da decomposição do amoníaco nos seus constituintes.

3. À temperatura de 25 °C uma solução 0,10M de um ácido fraco monoprótico – HA – tem uma constante de dissociação igual a 3,5 × 10⁻⁸. Calcule as concentrações no equilíbrio das diferentes espécies presentes e o pH da solução.

O ácido dissocia-se de acordo com: $HA + H_2O \iff A^- + H_3O^+$, e a rspetiva conatnte de acidez é:

$$K_a = \frac{[A^-] \times [H_3 O^+]}{[HA]}$$

p-fólio

Designando por Z a concentração de ácido que se dissocia, no equilíbrio temos:

$$[A^{-}] = Z;$$
 $[H_3O^{+}] = Z$ e $[HA] = 0.10 - Z$

Por substituição:

$$3,5 \times 10^{-8} = \frac{Z^2}{0,1 - Z} = \frac{Z^2}{0,1}$$
$$Z = 5.92 \times 10^{-5} M$$

E
$$[A^-] = [H_3 O^+] = 5.92 \times 10^{-5} M$$
; $e [HA] = 0.10 - 5.92 \times 10^{-5} M \approx 0.10 M$
Por seu lado o pH é: $pH = -log [H_3 O^+] = 4.23$

4. Considere a seguinte tabela:

Semi – equação	$E^{0}(V)$
$Ca^{2+} + 2e^- \rightarrow Ca$	-2,87
$Zn^{2+} + 2e^- \rightarrow Zn$	-0,76
$Fe^{2+} + 2e^- \rightarrow Fe$	-0,44
$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	+0,20
$Cu^{2+} + 2e^- \rightarrow Cu$	+0,34
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+1,33

a) Indique qual das substâncias (elemento, composto ou ião) é o mais oxidante e qual o mais redutor

O elemento mais redutor é o Ca e o mais oxidante o ião dicromato

- **b**) Calcule a f.e.m. de uma pilha formada por dois elétrodos normais de $Fe^{2+}|Fe\>$ e $Zn^{2+}|Zn\>$.
- c) Escreva a reação da pilha e indique qual o polo negativo

A reação que se verifica na pilha é $Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$

O polo negativo é o elétrodo de zinco e é onde tem lugar a oxidação

A f.e.m é dada por
$$E^0 = E^0_{catodo} - E^0_{anodo} = -0.44V - (-0.76V) = 0.32V$$

GRUPO 4 (TODAS AS PERGUNTAS FAZEM PARTE DO P-FÓLIO)

1. Um alceno possui cinco átomos de carbono na cadeia principal, uma ligação dupla entre os carbonos 1 e 2 e duas ramificações, cada uma com um carbono, ligadas nos carbonos 2 e 3. Desenhe a sua estrutura e indique o nome do composto.

$$CH_3$$

$$C = C - C - C - C$$

$$CH_3$$
2,3dimetil1-penteno

2. Considere que a combustão de uma amostra de 0,435g de um composto orgânico de massa molecular igual a 60, dá origem a 0,958g de dióxido de carbono e 0,522g de água. Determine a fórmula molecular deste composto e identifique possíveis isómeros, se existirem.

Dados:
$$M(C) = 12g/mol; M(H) = 1g/mol; M(O) = 16g/mol$$

Comecemos por calcular a percentagem de átomos de C, H e O

% de C =
$$\frac{0.958 \ g \ de \ CO_2}{0.435 \ g \ de \ composto} \times \frac{1 mol \ CO_2}{44 \frac{g}{mol} \ CO_2} \times \frac{1 \ mol \ C}{1 mol \ CO_2} \times \frac{12 g \ C}{1 \ mol \ C} \times 100$$

= 60,06%

% de
$$H = \frac{0,522 \ g \ de \ H_2O}{0,435 \ g \ de \ composto} \times \frac{1 mol \ H_2O}{18 \frac{g}{mol} H_2O} \times \frac{2 \ mol \ H}{1 mol \ H_2O} \times \frac{1g \ H}{1 \ mol \ H} \times 100$$

$$= 13,34\%$$

A percentagem restante corresponde ao oxigénio e é dada por:

$$\% 0 = 100 - (60,06 + 13,34) = 26,6\%$$

Vejamos agora o nº de átomos existente na percentagem determinada:

$$n^{\underline{o}}$$
 átomos de $C = \frac{60,06 \times 60 g\ composto}{12 \times 100}$
= 3 átomos C existentes em $60 g\ composto$

$$n^{\circ}$$
 átomos de $H = \frac{13,34 \times 60g\ composto}{1 \times 100}$
= 8 átomos H existentes em 60 g composto

$$n^{0}$$
 átomos de $0 = \frac{26,6 \times 60g \ composto}{16 \times 100}$
= 1 átomos 0 existentes em $60g$ composto

A fórmula molecular do composto é C_3H_8O ; isómeros:1-propanol, 2-propanol e metoxietano

3.

- 3.1. Identifique o tipo de isomeria que existe entre os seguintes pares de compostos:
 - a) Pentanal e 2-pentanona; de função
 - b) Ácido butanoico e Ácido metil propanoico de cadeia
 - c) 2-pentanona e 3-pentanona de posição

3.2. Escreva as fórmulas de estrutura dos compostos indicados na alínea a)

Pentanal

2 - Pentanona

4. Considere o composto com a seguinte fórmula estrutural apresenta as funções

- a) Ácido carboxílico e fenol;
- b) Álcool, fenol e éter;
- c) Álcool, fenol e aldeído;
- d) Éter, álcool e aldeído;
- e) Cetona, fenol e hidrocarboneto

Assinale a opção correta

FIM