ADLERTA '

Licenciatura em Eng. Informatica
Programacgao por Objetos 25/26

Proposta de projeto

Simulador de Carreiras

Diagrama UML

«AF4,2>
Militar

+nim: int {property}
+quadro: QuadroEspecial {property}

wAFd.2»
GestorCarreiras

-criterio: CriterioOrdenacaoElegiveis

- ISP/OCP: Gestor Carreiras depende s6 do minimo necessario.) ‘
+eh_elegivel_promocao(data_ref: date): bool

Stubs/Fakes de teste devem implementa-las como property.

_|'{property} = propriedade Python (@property). ¢
+eh_elegivel_promocao(data_ref: date): bool (7_] OicienteliElinscidevelesoreverdietamentsly ok ——--
+esta na_reserva(): bool S emmmm T - +def|n|r_cr|}elrm(_c: Frlte_rmDrdenac_anIlEleglvels): void TTee—- _
+pu5ta-aiua|”: Posto e o It;'stn destino: Ti nPnsLtI:rLﬁ;kEvento>c'arreira> Tl - =
+tempo_no_posto_em(data_ref: date): float =77 posTD : Tip = Tl
T - [- Tea
I R B Teel Seal
| Te-a .- - o
«interface» el -7 RN S
Promovivel ~. R @ T S N \\
+nim: int {property} ~ CriterioOrdenacacElegiveis J Contrato (LSP): N
+quadro: QuadroEspecial {property} Contrato: nim/quadro sdo propriedades (@property). |- ndo remove/duplica (preserva o conjunto)

data_tick: date, =

+esta_na_reserva(): bool
+posto_atual(): Posto
+tempo_no_posto_em(data_ref: date): float

© wducks
RelatorioVelocidadeCarreira

-ultima_promocao_por_militar: Dict<int, date>
-deltas_dias_por_militar: Dict , List<int>> J

Duck typing:
L ndo herda de RelatorioSimulacao.
’*W Protocolo minimo: registar_evento(evento) + para_dict().

-media_dias_por_militar: Dict<int, float>
-media_dias_global: float
-total_promocoes_observadas: int

Deve tolerar eventos nao relevantes (ignora) sem rebentar.

+registar_evento(evento): void
+finalizar(): void

+para_dict(): Dict<str, Any>
+gerar_texto(): str

- apenas reordena
w- ndo langa por dados em falta (fallback)

+ordenar(elegiveis: List<Promovivel=,
posto_destino: TipoPosto): List<Promovivel>

AN

|
|
|
|
! N
|
|
|
|

cria

. N
|©OrdenacanPorAntiguidadel [@(}rdenacanPnMEﬁtu
I I
L t

® «ABC»
RelatorioSimulacao
#eventos: List<EventoCarreira>

|__ |'1sP: ABC minima — no obriga todas as subclasses a exportar textof)SON. 'T
77" LSP: gerar_dados() devolve Dict com chaves str e valores serializaveis.

+registar_evento(evento: EventoCarreira): void i

+gerar_dados(): Dict<str, Any>

«AF4.2»

[@ Relatoriol}uadru‘ EventoCarreira

[@ ReIatnriaTempoMedinNaPosto} [@ Relatorinlndividual‘
]

L

[
] L] I)

| - - - ~

«interfaces»
RenderizavelTexto |

@ «interface»
Expopiavel>oN =1 ISP: 56 implementa quem realmente fornece JSON. quem realmente fornece saida em texto. "]

+exportar_json(): str

+gerar_texto(): str

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Tabela de decisoes e sintese critica

Tabela de decisbées polimorficas principais

Tipo de Principio
Comportamento .) Justificagao Impacto Pratico Cenario de Falha
B Polimorfismo ¢ SOLID 2
Motor mais simples; | Promovivel incompleto (falta
ABC formal, . P , mpleto
~ . O motor usa s6 o testes com stubs | método / propriedade), falha
Selecao de | através de | . . ., . . ~ e
oo minimo para | ISP+ DIP | faceis; permite | na selecéo; mitigagao:
elegiveis Interface . - « » . ~
formal decidir elegibilidade fantasmas sem | validagcdo + testes de
mexer na hierarquia integracao
Evolugdo vs AF4.2: ST L
. . Critério invalido (estratégia
deixa de alterar Mudangas normativas | . .
ABC formal, . . . filtra/duplica ou ordena por
~) GestorCarreiras isoladas; menos if; ~
Ordenacao de | através de - chave errada) > promogodes
Lo quando muda o | DIP+LSP | manutencéao .o -
elegiveis Strategy por . erradas; mitigagao: testes de
. regulamento; localizada na . ~
interface . . contrato da estratégia (nao
acrescenta-se uma estratégia ; .
alterar conjunto, sé ordem)
classe
Relatérios mais Cliente assume capacidade
ABC formal, | Nao forcar todos os (chama texto/JSON num
= . . focados; menos - ~
Exportacao do | através de | relatérios a exportar . « ., | relatério que nédo suporta) >
L. ISP+ LSP | métodos “a mais”; e o ~
relatério Interfaces de | tudo como estava na . - , erro; mitigagcao: verificagao
. integragbes soO onde o
capacidade AF4.2 . de capability / fallback no
faz sentido
controlador/exportador
Programador esquece
Relatério . - ~ - método/shape (evento sem
. Protétipo rapido sem Iteragdo rapida de | .. .p (
experimental de . s b tipo/data/nim), gera erro em
. Duck typing herdar / contrato OCP meétricas; util para . L ~
Velocidade da - runtime; mitigagdo: testes
. formal estudos temporarios e . ~
Carreira especificos + validagdo no
registar_evento

Cenarios de rutura (O codigo destes cenarios foi omitido face ao apresentado em AF5.1):

Cenario 1: Violagao LSP por excegdes/seméantica “surpresa” na ordenagao de elegiveis

Problema: Evolucéo de ordenacao por antiguidade para mérito, criagdo de uma estratégia que “faz mais do que
ordenar” ou langa excegdes quando faltam avaliagbes. Rutura: GestorCarreiras deixa de poder trocar
estratégias de forma segura porque a nova estratégia introduz falhas e comportamentos inesperados (quebra
LSP). Prevencao com contrato formal (ABC/interface) e regra de comportamento.

Cenario 2: Violagao ISP por “RelatorioSimulacao” monolitico

Problema: ABC de relatorio obriga todas as subclasses a exportar texto e JSON, mesmo quando um relatério é
s0 estatistico/estrutural. Rutura: As subclasses ficam poluidas com implementacdes artificiais, aumentando
ruido, risco e manutencgao (violacéo ISP). Solugao por segregacao (ABC minima + capacidades opcionais):
Cenario 3: Risco de Duck Typing em relatérios experimentais

Problema: programador cria um relatério “rapido” com registar_evento, mas esquece invariantes minimas ou
assume eventos com estrutura diferente. Rutura: Evento néo previsto (ou sem campos esperados), o relatdrio
falha em runtime e quebra a simulagao/relato. Mitigacao por testes de integragao (contrato informal “proativo”):

Analise:

O design polimérfico atual previne rutura nos pontos criticos e mitiga riscos nas zonas experimentais. Na
ordenacédo, a introducdo de CriterioOrdenacaoElegiveis imp6e um contrato claro (“sé reordena; nédo
filtra/duplica nem falha por dados em falta”), evitando que a passagem de antiguidade para mérito volte a
introduzir semantica surpresa ou excegodes que quebrem o GestorCarreiras (LSP), o que é confirmado pelo teste
que garante que o conjunto de elegiveis se mantém. Nos relatdrios, a redugcao de RelatorioSimulacao a uma
ABC minima e a separagado de exportagdes por capacidades (RenderizavelTexto, ExportavellSON) elimina a
pressdo de uma interface monolitica, evitando implementacdes “fake” e respeitando ISP/LSP. Por fim, o duck
typing (ex.: RelatorioVelocidadeCarreira) € assumido como flexivel, mas o risco de falhas em runtime pode ser
mitigado por testes de integragao que verificam o protocolo minimo e a tolerancia a eventos do core.

Simulador de Carreiras

AbE RTA I Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Cadigo Python Implementado - ABC e Implementagoes

from __future__ import annotations
from abc import ABC, abstractmethod
from datetime import date

from typing import Any, Dict, List

===== ABC DEFINIDA NA AF5.1 =====
CriterioOrdenacaoElegiveis, para mudan¢a de ordenagcdo por antiguidade -> mérito, sem modificar o motor).
class CriterioOrdenacaoElegiveis(ABC):
"""ABC para ordenacao de elegiveis. Respeita LSP. Contrato: Deve sempre retornar list, nado pode filtrar/duplicar

elegiveis e ndo deve langar exceg¢des por dados em falta (degradagdo graciosa).

@abstractmethod

def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
"""Reordena elegiveis (mesmos elementos, ordem diferente). Nunca retorna None.
pass

===== IMPLEMENTACOES CONCRETAS DA ABC =====

class OrdenacaoPorAntiguidade(CriterioOrdenacaoElegiveis):
"""Implementacao formal AF5.1: ordena¢do por antiguidade (anos_no_posto)."""

def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
return sorted(elegiveis, key=lambda m: float(m.get("anos_no_posto", 0.0)), reverse=True)

class OrdenacaoPorMerito(CriterioOrdenacaoElegiveis):
"""Implementacao formal AF5.1: ordena¢ao por mérito (fallback None -> 0.0). Evita o cendrio de rutura: estratégia
nao pode rebentar se faltar avalia¢do."""

def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
return sorted(elegiveis, key=lambda m: float(m.get("merito") or 6.0), reverse=True)

===== CLASSE DUCK TYPING INDEPENDENTE =====
Protocolo informal definido na AF5.1 - Implementag¢do por duck typing (relatdrio experimental):
Shape minimo do evento (dict): {"tipo": "PROMOCAO", "militar_nim": int, "data": date}
class RelatorioVelocidadeCarreira:
def __init_ (self) -> None:
self. ultima: Dict[int, date] = {}
self._deltas: Dict[int, List[int]] = {}

def registar_evento(self, evento) -> None:
if getattr(evento, "get", None) and evento.get("tipo") != "PROMOCAO":
return
nim = evento.get("militar nim") if getattr(evento, "get", None) else None
d = evento.get("data") if getattr(evento, "get", None) else None
if nim is None or d is None:
return # degradacdo graciosa (ndo rebenta)
if nim in self._ultima:
self._deltas.setdefault(nim, []).append((d - self._ultima[nim]).days)
self._ultima[nim] = d

def media_global_dias(self) -> float:
vals = [x for 1lst in self._deltas.values() for x in 1lst]
return sum(vals) / len(vals) if vals else 6.0

===== FUNCAO GENERICA QUE USA POLIMORFISMO =====
def processar_promocoes(elegiveis: List[Dict[str, Any]], criterio, relatorio,
data_tick: date, posto_destino: Any) -> Dict[str, Any]:
"""Fung¢ao polimérfica que aceita qualquer objeto com métodos esperados. Demonstra:
- Polimorfismo formal (Strategy): criterio com ordenar(...)
- Duck typing defensivo: relatorio com registar_evento(...) (hasattr/callable)"""

ordenados = criterio.ordenar(elegiveis, data_tick, posto_destino) \
if hasattr(criterio, "ordenar") and callable(criterio.ordenar) else list(elegiveis)

if hasattr(relatorio, "registar_evento") and callable(relatorio.registar_evento):
for m in ordenados:
relatorio.registar_evento({"tipo"”: "PROMOCAO", "militar nim": m.get("nim"), "data": data_tick})

return {
“"ordenados nim": [m.get("nim") for m in ordenados],
"media_global dias": relatorio.media_global _dias() if hasattr(relatorio, "media global dias") else None,

Simulador de Carreiras

NIVERSIDAD!

AbE RTA [| Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Testes polimorficos

import unittest

def elegiveis_base():
return [
“nim": 101, "anos_no_posto": 3.0, "merito": 10.0},
"nim": 262, "anos_no_posto": 1.0, "merito": None},
"nim": 363, "anos_no_posto": 2.0, "merito": 20.0},

===== TESTES UNITARIOS =====
class TestCriteriosOrdenacao_Unitarios(unittest.TestCase):
"""Testes de unidade para estratégias formais (ABC) — validam métodos individuais."""

def test_ordenar_quando_antiguidade_entao_ordem_desc_por_anos_no_posto(self):
"""Verifica que OrdenacaoPorAntiguidade.ordenar() ordena por tempo no posto (desc)."""
crit = OrdenacaoPorAntiguidade()
out = crit.ordenar(elegiveis_base(), date(2025, 1, 1), "SARG-AJUD")
self.assertEqual([m["“nim"] for m in out], [101, 363, 202],
"Antiguidade deve ordenar por anos_no_posto (desc) de forma deterministica.")

def test_ordenar_quando_merito_none_entao_fallback_zero_sem_excecao(self):
"""Verifica que OrdenacaoPorMerito.ordenar() degrada graciosamente quando merito=None."""
crit = OrdenacaoPorMerito()
out = crit.ordenar(elegiveis_base(), date(2025, 1, 1), "SARG-AJUD")
self.assertEqual([m["nim"] for m in out], [3@3, 101, 202],
"Merito=None deve degradar para 0.0 e manter ordenacdo valida (sem excegdes).")

class TestRelatorioDuck_Unitarios(unittest.TestCase):
"""Testes de unidade para duck typing — verificacdo de protocolo informal AF5.1."""

def test_registar_evento_quando_nao_promocao_entao_ignora(self):
"""Verifica que RelatorioVelocidadeCarreira ignora eventos que ndao sejam PROMOCAO."""
r = RelatorioVelocidadeCarreira()
r.registar_evento({"tipo": "RESERVA", "militar_nim": 101, "data": date(2025, 1, 1)})
self.assertEqual(r.media_global_dias(), ©.0,
"Relatério duck deve ignorar eventos nao-PROMOCAO sem alterar métricas.")

def test_registar_evento_quando_duas_promocoes_entao_delta_e_media_calculados(self):
"""Verifica que duas promo¢des do mesmo militar geram delta (dias) e média global."""
r = RelatorioVelocidadeCarreira()
r.registar_evento({"tipo"”: "PROMOCAO", "militar nim": 101, "data": date(2025, 1, 1)})
r.registar_evento({"tipo": "PROMOCAO", "militar_nim": 101, "data": date(2025, 1, 11)})
self.assertEqual(r.media_global_dias(), 16.6,
"Duas promog¢des do mesmo militar devem produzir delta e média global consistente.")

==== TESTES DE INTEGRACAO ====
class TestIntegracaoPolimorfismo(unittest.TestCase):
"""Testes de integrag¢do — validam colaboragdo Strategy (ABC) + funcdo genérica + relatério (duck)."""

def test_processar_promocoes_com_criterio_formal(self):
"""Testa funcdo polimérfica com implementa¢des formais completas (ABC)."""
crit = OrdenacaoPorAntiguidade()
rel = RelatorioVelocidadeCarreira()
resultado = processar_promocoes(elegiveis_base(), crit, rel, date(2025, 1, 1), "SARG-AJUD")
self.assertIn("ordenados_nim", resultado, "Fung¢do deve devolver ordem final observavel.")
self.assertEqual(resultado[“ordenados_nim"], [101, 303, 202],
"Fluxo completo deve refletir a estratégia selecionada.")

def test_substituibilidade_lsp_quando_troca_criterios_entao_mesmo_contrato(self):
"""Valida que diferentes estratégias sdo intercambidveis sem quebrar o cliente."""
Valida prevengdo do cendrio de rutura 1 identificado na AF5.1
(Estratégia ndo pode filtrar/duplicar nem rebentar por dados em falta)
elegiveis = elegiveis_base()
criterios = [OrdenacaoPorAntiguidade(), OrdenacaoPorMerito()]
for c in criterios:
with self.subTest(criterio=type(c).__name__):
out = c.ordenar(elegiveis, date(2625, 1, 1), “"SARG-AJUD")
self.assertEqual(len(out), len(elegiveis),
"LSP: estratégia ndo pode remover nem criar elementos (tamanho preservado).")
self.assertEqual({m["nim"] for m in out}, {m["nim"] for m in elegiveis},
"LSP: estratégia deve manter o mesmo conjunto (sé reordena).")

def test_cenario_rutura_duck_evento_incompleto_nao_quebra(self):
"""Testa cenario de rutura AF5.1: protocolo informal pode falhar em runtime.
Aqui validamos a mitiga¢do: relatdério duck degrada graciosamente com evento incompleto.
Valida preveng¢do do cendrio de rutura 3 identificado na AF5.1
rel = RelatorioVelocidadeCarreira()
try:
rel.registar_evento({"tipo"”: "PROMOCAO", "militar_nim": 101}) # falta "data”
except Exception as exc:
self.fail(f"Relatério duck ndo pode rebentar; deve degradar graciosamente. Erro: {exc}")

self.assertEqual(rel.media_global_dias(), @.0,
"Sem data, o evento deve ser ignorado e as métricas manter-se consistentes.")

Simulador de Carreiras

A bE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Relatério de evolugao

Incoeréncia observada
Aimplementagéao pratica do SCM evidenciou a tensao central entre a flexibilidade do duck typing e a seguranca

dos contratos formais por ABC, exatamente como antecipado na AF5.1. O relatério experimental
RelatorioVelocidadeCarreira (duck typing) confirmou o trade-off planeado:

¢ Vantagem observada: integragao imediata no pipeline de simulagdo sem herdar de RelatorioSimulacao
nem implementar “capabilities” formais; basta existir registar_evento(evento).

e Risco confirmado: a auséncia/alteracdo do shape do evento (ex.: falta de data) s6 é detetada em
runtime, podendo gerar falhas ou métricas invalidas.

e Contradigao: o sistema quer aceitar relatdrios rapidos e evolutivos, mas simultaneamente exige
estabilidade para ndo comprometer resultados da simulagao.

Esta tenséo tornou-se evidente no teste de integracéo
test_cenario_rutura_duck_evento_incompleto_nao_quebra(), onde o relatério duck recebe um evento
incompleto e, embora ndo colapse, tem de ignorar o input para manter coeréncia.

Consequéncia pratica

Aincoeréncia implicou trés consequéncias diretas no codigo e nos testes:

o Verificacdo defensiva no protocolo informal: o registar_evento usa getattr/get para tolerar eventos
incompletos;

e Degradacao graciosa: em vez de excegdes, o comportamento € ignorar/retornar valores neutros
(mantendo métricas consistentes);

¢ Dupla camada de validagao: testes unitarios para as estratégias formais (ABC) e testes de integracao
para o duck typing.

Na pratica, isto aumenta a complexidade do “codigo de cola” (validagdes e defaults), mas permite manter
relatérios experimentais sem bloquear evolugao.

Limite aceite

Aceitei conscientemente que relatorios experimentais podem ser incompletos, mas defini condigdes claras:

o Testes de integragao obrigatérios para qualquer relatério duck: o] teste
test_cenario_rutura_duck_evento_incompleto_nao_quebra() valida que o relatério ndo compromete o
fluxo da simulacgéo.

¢ Degradacao documentada: se faltam campos, o evento é ignorado (ndo ha métricas falsas nem crash).

e Segregacao do risco: duck typing fica confinado a funcionalidades nao-criticas (relatérios
adicionais/experimentais), ndo ao motor de promogoes.

Em contrapartida, para comportamentos criticos (ordenagdo), a rigidez foi ndo negociavel: a ABC
CriterioOrdenacaoElegiveis garante que trocar estratégias nao altera o conjunto de elegiveis nem falha por
dados em falta.

Principio de design envolvido
Esta decisao equilibra explicitamente:

e OCP: novas politicas de ordenagéao entram por extensao (OrdenacaoPorMerito como nova classe), sem
alterar o motor; relatérios duck permitem extensoes rapidas sem mexer no core.

e LSP: as estratégias formais sao substituiveis sem “surpresas”; o} teste
test_substituibilidade_lsp_quando_troca_criterios_entao_mesmo_contrato() confirma que
nenhuma estratégia filtra/duplica elegiveis.

e ISP: o relatdrio duck implementa apenas registar_evento, ndo sendo forgado a exportar/formatar/gerar
texto se isso nao for necessario.

O custo aceite é a perda de verificagdo formal no duck typing, compensada por mitigacao via testes e validagao
defensiva. O resultado pratico € um nucleo estavel (ABC + testes LSP) e uma periferia extensivel (duck typing),
com risco controlado.

Simulador de Carreiras

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Validacao das decis6es da AF5.1

Na AF5.1 defini quatro pontos de polimorfismo no SCM para permitir evolucao sem “engordar” o GestorCarreiras
com if/elif por regulamento, categoria ou excegoes: (1) selecao de elegiveis via Promovivel, (2) ordenagéao via
Strategy (CriterioOrdenacaokElegiveis), (3) relatérios formais com ABC minima (RelatorioSimulacao) e
capabilities segregadas (ExportavellSON/RenderizavelTexto) e (4) relatdrios experimentais por duck typing
(RelatorioVelocidadeCarreira). Na AF5.2, a implementacgao e a bateria de testes permitiram ligar estas decisbes
a resultados concretos: menor acoplamento entre camadas, maior facilidade de testar o core isoladamente e
maior previsibilidade nos pontos criticos, sem impedir experimentagao.

A Strategy formal para ordenacgéao foi a decisdo mais solida. Na pratica, tornou a mudanga “antiguidade > mérito”
uma extensao por nova classe, sem alterar o motor (OCP/DIP), exatamente o cenario de evolucao problematico
identificado na AF4.2/AF5.1. Mais importante, os testes validaram LSP ao garantir invariantes comportamentais:
qualquer critério sé reordena, ndo remove/duplica elegiveis e nao falha por dados em falta. Ou seja, o contrato
deixou de ser apenas “assinatura” e passou a ser “comportamento observavel”. O fallback implementado é
evidéncia direta de prevencgao da rutura (avaliagbes em falta causarem excegdes e quebra do fluxo):

return sorted(elegiveis, key=lambda m: float(m.get("merito") or 0.0), reverse=True)

Este ponto mostrou-se adequado porque o impacto de erro é alto (promogdes erradas ou bloqueio da
simulacao) e o custo de formalizagéo é baixo.

Aintroducao de Promovivel, apesar de ndo se encontrar exposta aqui a sua implementacao, também se revelou
adequada, pois GestorCarreiras passou a depender apenas do minimo necessario (ISP/DIP), reduzindo
dependéncia da hierarquia Militar e do seu estado completo (histdrico, reserva, datas, etc.). Isto traduziu-se em
maior testabilidade, pudendo-se criar stubs/fantasmas para simular elegiveis e validar o comportamento do
motor sem depender de carregamento de dados ou regras especificas por categoria. Existe necessidade de
documentar exatamente o que é obrigatério (ex.: nim, quadro, posto_atual, eh_elegivel_promocao) para evitar
stubs “quase compativeis” que geram falhas artificiais e confundem diagndstico, como por exemplo:

class Promovivel(Protocol):
@property
def nim(self) -> int: ...
def quadro(self) -> Any: ...
def eh_elegivel promocao(self, data_ref: date) -> bool: ...
def posto_atual(self) -> Any: ...

A decisdo que exigiu mais cuidado foi a aplicagao de ISP nos relatdrios formais. Ao separar capabilities, evitou-
se o0 problema classico da AF4.2 (classes obrigadas a implementar métodos irrelevantes, produzindo “fake
methods” como return "" sé para cumprir contrato). Em AF5.2, isso tornou as classes mais limpas e a
manutencao mais obvia (“cada relatério faz o que promete”). No entanto, apareceu um ajuste inevitavel: o
cliente (controlador/exportador) ndo pode assumir que todo o relatdrio exporta JSON ou gera texto. O consumo
teve de ser defensivo, com fallback para gerar_dados() quando a capability ndo existe, sob pena de criar um novo
cenario de rutura (“cliente chama método inexistente”):

if isinstance(rel, ExportavelJSON): return rel.exportar_json()
return json.dumps(rel.gerar_dados())

Este ajuste mostrou que ISP melhora o design, mas transfere responsabilidade para quem consome as
interfaces.

Por fim, o duck typing confirmou o trade-off planeado: é excelente para relatérios experimentais (flexibilidade e
extensao rapida sem tocar no core), mas expoe fragilidade ao “shape” do evento em runtime. A mitigagao pratica
foi degradacéo graciosa + testes de integracao (o protocolo informal passa a ser “contrato executavel” via testes,
como demonstrado em test_cenario_rutura_duck_evento_incompleto_nao_quebra).

Em sintese, a AF5.2 validou que ABC/interfaces devem proteger o nlicleo (selegcao/ordenacéo) pela exigéncia de
previsibilidade e substituibilidade, enquanto o duck typing é util fora do core para inovacdo/experiéncia, desde
que o risco seja controlado por validagido defensiva e testes de integragéo.

Simulador de Carreiras

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Reflexdo sobre principios SOLID

A AF5.2 permitiu observar que os principios SOLID nao sao “regras absolutas”, mas ferramentas a aplicar onde
o custo do erro € maior. No SCM, isto ficou claro ao distinguir o nucleo (promogodes/selecao/ordenacao) das
extensodes (relatoérios e prototipos).

OCP — Aberto/Fechado (extensibilidade sem modificar o core)

No contexto do SCM, o OCP foi aplicado sobretudo na ordenacgéao de elegiveis. Amudanca de “antiguidade” para
“mérito” (cenario evolutivo identificado na AF4.2/AF5.1) deixou de exigir alteracdes no GestorCarreiras, fazendo
com que a evolugao passasse a ser feita por extensao, criando uma nova estratégia.

Tensao pratica: aplicar OCP em excesso pode gerar “classe por tudo”. O limite aceite foi: abstrair apenas onde
a variabilidade é real e recorrente (politicas de ordenacgao e formatos de exportacao), evitando criar interfaces
desnecessarias para comportamentos estaveis.

LSP — Substituicao de Liskov (trocar implementagoes sem “surpresas”)

No SCM, LSP foi o principio mais sensivel porque falhas aqui ndo sao “apenas erros”, podem gerar promocoes
erradas. A AF5.2 mostrou que LSP ndo se garante s6 com assinatura: exige invariantes comportamentais
verificaveis (“so6 reordena; nao filtra/duplica; ndo rebenta com dados em falta”).

A légica de fallback foi uma medida direta para preservar substituibilidade:

|key=1ambda m: float(m.get("merito") or 0.0) # evita exce¢do quando falta avaliagdo

Tensao pratica: tornar LSP “real” aumentou o numero de testes e obrigou a documentar melhor o contrato (o
que a estratégia pode e ndo pode fazer). Em troca, o motor ficou mais previsivel e menos fragil a mudancas de
regras.

ISP — Segregacao de Interfaces (depender s6 do minimo necessario)
O ISP foi aplicado em dois pontos:

1. Promovivel: o GestorCarreiras depende do minimo para decidir elegibilidade/ordenar, reduzindo
acoplamento a hierarquia Militar (e facilitando stubs).

2. Relatérios por capabilities: separar ExportavelJSON e RenderizavelTexto evitou obrigar todos os
relatérios a implementar tudo (evitou “métodos fake”).

Exemplo de consumo correto (o cliente ndo assume capabilities):

if isinstance(rel, ExportavelJSON):
return rel.exportar_json()
return json.dumps(rel.gerar_dados())

Tensao pratica: ISP melhora clareza, mas desloca responsabilidade para o cliente (tem de verificar capabilities).
O risco é cair em excesso de interfaces pequenas e fragmentacao. O limite aceite foi introduzir capabilities
apenas quando havia subclasses que claramente nao precisavam do método.

Sintese das tensoes (principios vs praticidade)

A AF5.2 confirmou um padrdo: OCP e ISP aumentam flexibilidade e reduzem acoplamento, mas podem
aumentar complexidade conceptual (mais classes/contratos). LSP aumenta seguranga, mas exige esforgo
adicional (invariantes + testes). A decisado pratica foi aplicar rigor (ABC + testes LSP) no core e aceitar
flexibilidade controlada (duck typing + mitigagcdo) nas extensdes, equilibrando qualidade arquitetural com
pragmatismo de implementacgéo.

Simulador de Carreiras

AbE RTA] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Conclusao consolidada

O balancgo entre concegao (AF5.1) e implementagao (AF5.2) foi positivo: as decisdes de desenho deixaram de
ser apenas “boas intencdes” e passaram a produzir efeitos observaveis no cédigo e nos testes. A AF5.2
confirmou que identificar, na AF5.1, pontos reais de variabilidade (selecdo/ordenacdo de elegiveis,
exportagao/representacao de relatérios e relatérios experimentais) foi essencial para evitar crescimento do
nucleo por condicionais e para reduzir acoplamento entre camadas.

A arquitetura polimérfica planeada ficou validada em dois sentidos. Primeiro, no nudcleo
(promocodes/ordenacao), a formalizacdo por contratos (interfaces/ABC) e invariantes testaveis reforcou a
substituibilidade (LSP) e permitiu evolugédo por extensao (OCP), mantendo o motor dependente apenas do
minimo necessario (ISP/DIP). Segundo, na periferia, o duck typing mostrou-se viavel como “valvula de escape”
para protétipos e relatérios experimentais, desde que acompanhado por degradacao graciosa e testes de
integragao que funcionam como contrato executavel.

As principais licdes aprendidas foram: em Python, a seguranca do polimorfismo nao vem s6 de “tipos”, vem de
contratos comportamentais e testes; aplicar ISP melhora clareza, mas obriga o cliente a consumir capabilities
com disciplina (ndo assumir métodos); duck typing é poderoso, mas deve ser confinado a zonas nao-criticas e
com mitigagdo explicita. Com isto, o sistema fica preparado para evolugdes futuras (novos critérios
regulamentares, novos formatos de exportagdo, novos relatérios), com menor risco de regressdes e com um
caminho claro: estender por novas classes onde o impacto € alto; experimentar por protocolos informais onde
o impacto é baixo.

Simulador de Carreiras

