

Proposta de projeto

Simulador de Carreiras

Licenciatura em Eng. Informática
Programação por Objetos 25/26 2400250 – José Barão Vieira

Diagrama UML

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Tabela de decisões e síntese crítica

Tabela de decisões polimórficas principais

Comportamento Tipo de
Polimorfismo

Justificação Princípio
SOLID

Impacto Prático Cenário de Falha

Seleção de
elegíveis

ABC formal,
através de
Interface
formal

O motor usa só o
“mínimo” para
decidir elegibilidade

ISP + DIP

Motor mais simples;
testes com stubs
fáceis; permite
“fantasmas” sem
mexer na hierarquia

Promovível incompleto (falta
método / propriedade), falha
na seleção; mitigação:
validação + testes de
integração

Ordenação de
elegíveis

ABC formal,
através de
Strategy por
interface

Evolução vs AF4.2:
deixa de alterar
GestorCarreiras
quando muda o
regulamento;
acrescenta-se uma
classe

DIP + LSP

Mudanças normativas
isoladas; menos if;
manutenção
localizada na
estratégia

Critério inválido (estratégia
filtra/duplica ou ordena por
chave errada) → promoções
erradas; mitigação: testes de
contrato da estratégia (não
alterar conjunto, só ordem)

Exportação do
relatório

ABC formal,
através de
Interfaces de
capacidade

Não forçar todos os
relatórios a exportar
tudo como estava na
AF4.2

ISP + LSP

Relatórios mais
focados; menos
métodos “a mais”;
integrações só onde
faz sentido

Cliente assume capacidade
(chama texto/JSON num
relatório que não suporta) →
erro; mitigação: verificação
de capability / fallback no
controlador/exportador

Relatório
experimental de
Velocidade da
Carreira

Duck typing
Protótipo rápido sem
herdar / contrato
formal

OCP
Iteração rápida de
métricas; útil para
estudos temporários

Programador esquece
método/shape (evento sem
tipo/data/nim), gera erro em
runtime; mitigação: testes
específicos + validação no
registar_evento

Cenários de rutura (O código destes cenários foi omitido face ao apresentado em AF5.1):
Cenário 1: Violação LSP por exceções/semântica “surpresa” na ordenação de elegíveis
Problema: Evolução de ordenação por antiguidade para mérito, criação de uma estratégia que “faz mais do que
ordenar” ou lança exceções quando faltam avaliações. Rutura: GestorCarreiras deixa de poder trocar
estratégias de forma segura porque a nova estratégia introduz falhas e comportamentos inesperados (quebra
LSP). Prevenção com contrato formal (ABC/interface) e regra de comportamento.
Cenário 2: Violação ISP por “RelatorioSimulacao” monolítico
Problema: ABC de relatório obriga todas as subclasses a exportar texto e JSON, mesmo quando um relatório é
só estatístico/estrutural. Rutura: As subclasses ficam poluídas com implementações artificiais, aumentando
ruído, risco e manutenção (violação ISP). Solução por segregação (ABC mínima + capacidades opcionais):
Cenário 3: Risco de Duck Typing em relatórios experimentais
Problema: programador cria um relatório “rápido” com registar_evento, mas esquece invariantes mínimas ou
assume eventos com estrutura diferente. Rutura: Evento não previsto (ou sem campos esperados), o relatório
falha em runtime e quebra a simulação/relato. Mitigação por testes de integração (contrato informal “proativo”):

Análise:

O design polimórfico atual previne rutura nos pontos críticos e mitiga riscos nas zonas experimentais. Na
ordenação, a introdução de CriterioOrdenacaoElegiveis impõe um contrato claro (“só reordena; não
filtra/duplica nem falha por dados em falta”), evitando que a passagem de antiguidade para mérito volte a
introduzir semântica surpresa ou exceções que quebrem o GestorCarreiras (LSP), o que é confirmado pelo teste
que garante que o conjunto de elegíveis se mantém. Nos relatórios, a redução de RelatorioSimulacao a uma
ABC mínima e a separação de exportações por capacidades (RenderizavelTexto, ExportavelJSON) elimina a
pressão de uma interface monolítica, evitando implementações “fake” e respeitando ISP/LSP. Por fim, o duck
typing (ex.: RelatorioVelocidadeCarreira) é assumido como flexível, mas o risco de falhas em runtime pode ser
mitigado por testes de integração que verificam o protocolo mínimo e a tolerância a eventos do core.

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Código Python Implementado – ABC e Implementações

from __future__ import annotations
from abc import ABC, abstractmethod
from datetime import date
from typing import Any, Dict, List

===== ABC DEFINIDA NA AF5.1 =====
CriterioOrdenacaoElegiveis, para mudança de ordenação por antiguidade -> mérito, sem modificar o motor).
class CriterioOrdenacaoElegiveis(ABC):
 """ABC para ordenação de elegíveis. Respeita LSP. Contrato: Deve sempre retornar list, não pode filtrar/duplicar
elegíveis e não deve lançar exceções por dados em falta (degradação graciosa)."""

 @abstractmethod
 def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
 """Reordena elegíveis (mesmos elementos, ordem diferente). Nunca retorna None."""
 pass

===== IMPLEMENTAÇÕES CONCRETAS DA ABC =====
class OrdenacaoPorAntiguidade(CriterioOrdenacaoElegiveis):
 """Implementação formal AF5.1: ordenação por antiguidade (anos_no_posto)."""

 def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
 return sorted(elegiveis, key=lambda m: float(m.get("anos_no_posto", 0.0)), reverse=True)

class OrdenacaoPorMerito(CriterioOrdenacaoElegiveis):
 """Implementação formal AF5.1: ordenação por mérito (fallback None -> 0.0). Evita o cenário de rutura: estratégia
não pode rebentar se faltar avaliação."""

 def ordenar(self, elegiveis: List[Dict[str, Any]], data_tick: date, posto_destino: Any) -> List[Dict[str, Any]]:
 return sorted(elegiveis, key=lambda m: float(m.get("merito") or 0.0), reverse=True)

===== CLASSE DUCK TYPING INDEPENDENTE =====
Protocolo informal definido na AF5.1 - Implementação por duck typing (relatório experimental):
Shape mínimo do evento (dict): {"tipo": "PROMOCAO", "militar_nim": int, "data": date}
class RelatorioVelocidadeCarreira:
 def __init__(self) -> None:
 self._ultima: Dict[int, date] = {}
 self._deltas: Dict[int, List[int]] = {}

 def registar_evento(self, evento) -> None:
 if getattr(evento, "get", None) and evento.get("tipo") != "PROMOCAO":
 return
 nim = evento.get("militar_nim") if getattr(evento, "get", None) else None
 d = evento.get("data") if getattr(evento, "get", None) else None
 if nim is None or d is None:
 return # degradação graciosa (não rebenta)
 if nim in self._ultima:
 self._deltas.setdefault(nim, []).append((d - self._ultima[nim]).days)
 self._ultima[nim] = d

 def media_global_dias(self) -> float:
 vals = [x for lst in self._deltas.values() for x in lst]
 return sum(vals) / len(vals) if vals else 0.0

===== FUNÇÃO GENÉRICA QUE USA POLIMORFISMO =====
def processar_promocoes(elegiveis: List[Dict[str, Any]], criterio, relatorio,
 data_tick: date, posto_destino: Any) -> Dict[str, Any]:
 """Função polimórfica que aceita qualquer objeto com métodos esperados. Demonstra:
 - Polimorfismo formal (Strategy): criterio com ordenar(...)
 - Duck typing defensivo: relatorio com registar_evento(...) (hasattr/callable)"""

 ordenados = criterio.ordenar(elegiveis, data_tick, posto_destino) \
 if hasattr(criterio, "ordenar") and callable(criterio.ordenar) else list(elegiveis)

 if hasattr(relatorio, "registar_evento") and callable(relatorio.registar_evento):
 for m in ordenados:
 relatorio.registar_evento({"tipo": "PROMOCAO", "militar_nim": m.get("nim"), "data": data_tick})

 return {
 "ordenados_nim": [m.get("nim") for m in ordenados],
 "media_global_dias": relatorio.media_global_dias() if hasattr(relatorio, "media_global_dias") else None,
 }

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Testes polimórficos

import unittest

def elegiveis_base():
 return [
 {"nim": 101, "anos_no_posto": 3.0, "merito": 10.0},
 {"nim": 202, "anos_no_posto": 1.0, "merito": None},
 {"nim": 303, "anos_no_posto": 2.0, "merito": 20.0},
]

===== TESTES UNITÁRIOS =====
class TestCriteriosOrdenacao_Unitarios(unittest.TestCase):
 """Testes de unidade para estratégias formais (ABC) — validam métodos individuais."""

 def test_ordenar_quando_antiguidade_entao_ordem_desc_por_anos_no_posto(self):
 """Verifica que OrdenacaoPorAntiguidade.ordenar() ordena por tempo no posto (desc)."""
 crit = OrdenacaoPorAntiguidade()
 out = crit.ordenar(elegiveis_base(), date(2025, 1, 1), "SARG-AJUD")
 self.assertEqual([m["nim"] for m in out], [101, 303, 202],
 "Antiguidade deve ordenar por anos_no_posto (desc) de forma determinística.")

 def test_ordenar_quando_merito_none_entao_fallback_zero_sem_excecao(self):
 """Verifica que OrdenacaoPorMerito.ordenar() degrada graciosamente quando merito=None."""
 crit = OrdenacaoPorMerito()
 out = crit.ordenar(elegiveis_base(), date(2025, 1, 1), "SARG-AJUD")
 self.assertEqual([m["nim"] for m in out], [303, 101, 202],
 "Merito=None deve degradar para 0.0 e manter ordenação válida (sem exceções).")

class TestRelatorioDuck_Unitarios(unittest.TestCase):
 """Testes de unidade para duck typing — verificação de protocolo informal AF5.1."""

 def test_registar_evento_quando_nao_promocao_entao_ignora(self):
 """Verifica que RelatorioVelocidadeCarreira ignora eventos que não sejam PROMOCAO."""
 r = RelatorioVelocidadeCarreira()
 r.registar_evento({"tipo": "RESERVA", "militar_nim": 101, "data": date(2025, 1, 1)})
 self.assertEqual(r.media_global_dias(), 0.0,
 "Relatório duck deve ignorar eventos não-PROMOCAO sem alterar métricas.")

 def test_registar_evento_quando_duas_promocoes_entao_delta_e_media_calculados(self):
 """Verifica que duas promoções do mesmo militar geram delta (dias) e média global."""
 r = RelatorioVelocidadeCarreira()
 r.registar_evento({"tipo": "PROMOCAO", "militar_nim": 101, "data": date(2025, 1, 1)})
 r.registar_evento({"tipo": "PROMOCAO", "militar_nim": 101, "data": date(2025, 1, 11)})
 self.assertEqual(r.media_global_dias(), 10.0,
 "Duas promoções do mesmo militar devem produzir delta e média global consistente.")

==== TESTES DE INTEGRAÇÃO ====
class TestIntegracaoPolimorfismo(unittest.TestCase):
 """Testes de integração — validam colaboração Strategy (ABC) + função genérica + relatório (duck)."""

 def test_processar_promocoes_com_criterio_formal(self):
 """Testa função polimórfica com implementações formais completas (ABC)."""
 crit = OrdenacaoPorAntiguidade()
 rel = RelatorioVelocidadeCarreira()
 resultado = processar_promocoes(elegiveis_base(), crit, rel, date(2025, 1, 1), "SARG-AJUD")
 self.assertIn("ordenados_nim", resultado, "Função deve devolver ordem final observável.")
 self.assertEqual(resultado["ordenados_nim"], [101, 303, 202],
 "Fluxo completo deve refletir a estratégia selecionada.")

 def test_substituibilidade_lsp_quando_troca_criterios_entao_mesmo_contrato(self):
 """Valida que diferentes estratégias são intercambiáveis sem quebrar o cliente."""
 # Valida prevenção do cenário de rutura 1 identificado na AF5.1
 # (Estratégia não pode filtrar/duplicar nem rebentar por dados em falta)
 elegiveis = elegiveis_base()
 criterios = [OrdenacaoPorAntiguidade(), OrdenacaoPorMerito()]
 for c in criterios:
 with self.subTest(criterio=type(c).__name__):
 out = c.ordenar(elegiveis, date(2025, 1, 1), "SARG-AJUD")
 self.assertEqual(len(out), len(elegiveis),
 "LSP: estratégia não pode remover nem criar elementos (tamanho preservado).")
 self.assertEqual({m["nim"] for m in out}, {m["nim"] for m in elegiveis},
 "LSP: estratégia deve manter o mesmo conjunto (só reordena).")

 def test_cenario_rutura_duck_evento_incompleto_nao_quebra(self):
 """Testa cenário de rutura AF5.1: protocolo informal pode falhar em runtime.
 Aqui validamos a mitigação: relatório duck degrada graciosamente com evento incompleto."""
 # Valida prevenção do cenário de rutura 3 identificado na AF5.1
 rel = RelatorioVelocidadeCarreira()
 try:
 rel.registar_evento({"tipo": "PROMOCAO", "militar_nim": 101}) # falta "data"
 except Exception as exc:
 self.fail(f"Relatório duck não pode rebentar; deve degradar graciosamente. Erro: {exc}")

 self.assertEqual(rel.media_global_dias(), 0.0,
 "Sem data, o evento deve ser ignorado e as métricas manter-se consistentes.")

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Relatório de evolução

Incoerência observada
A implementação prática do SCM evidenciou a tensão central entre a flexibilidade do duck typing e a segurança
dos contratos formais por ABC, exatamente como antecipado na AF5.1. O relatório experimental
RelatorioVelocidadeCarreira (duck typing) confirmou o trade-off planeado:

• Vantagem observada: integração imediata no pipeline de simulação sem herdar de RelatorioSimulacao
nem implementar “capabilities” formais; basta existir registar_evento(evento).

• Risco confirmado: a ausência/alteração do shape do evento (ex.: falta de data) só é detetada em
runtime, podendo gerar falhas ou métricas inválidas.

• Contradição: o sistema quer aceitar relatórios rápidos e evolutivos, mas simultaneamente exige
estabilidade para não comprometer resultados da simulação.

Esta tensão tornou-se evidente no teste de integração
test_cenario_rutura_duck_evento_incompleto_nao_quebra(), onde o relatório duck recebe um evento
incompleto e, embora não colapse, tem de ignorar o input para manter coerência.
Consequência prática
A incoerência implicou três consequências diretas no código e nos testes:

• Verificação defensiva no protocolo informal: o registar_evento usa getattr/get para tolerar eventos
incompletos;

• Degradação graciosa: em vez de exceções, o comportamento é ignorar/retornar valores neutros
(mantendo métricas consistentes);

• Dupla camada de validação: testes unitários para as estratégias formais (ABC) e testes de integração
para o duck typing.

Na prática, isto aumenta a complexidade do “código de cola” (validações e defaults), mas permite manter
relatórios experimentais sem bloquear evolução.
Limite aceite
Aceitei conscientemente que relatórios experimentais podem ser incompletos, mas defini condições claras:

• Testes de integração obrigatórios para qualquer relatório duck: o teste
test_cenario_rutura_duck_evento_incompleto_nao_quebra() valida que o relatório não compromete o
fluxo da simulação.

• Degradação documentada: se faltam campos, o evento é ignorado (não há métricas falsas nem crash).
• Segregação do risco: duck typing fica confinado a funcionalidades não-críticas (relatórios

adicionais/experimentais), não ao motor de promoções.
Em contrapartida, para comportamentos críticos (ordenação), a rigidez foi não negociável: a ABC
CriterioOrdenacaoElegiveis garante que trocar estratégias não altera o conjunto de elegíveis nem falha por
dados em falta.
Princípio de design envolvido
Esta decisão equilibra explicitamente:

• OCP: novas políticas de ordenação entram por extensão (OrdenacaoPorMerito como nova classe), sem
alterar o motor; relatórios duck permitem extensões rápidas sem mexer no core.

• LSP: as estratégias formais são substituíveis sem “surpresas”; o teste
test_substituibilidade_lsp_quando_troca_criterios_entao_mesmo_contrato() confirma que
nenhuma estratégia filtra/duplica elegíveis.

• ISP: o relatório duck implementa apenas registar_evento, não sendo forçado a exportar/formatar/gerar
texto se isso não for necessário.

O custo aceite é a perda de verificação formal no duck typing, compensada por mitigação via testes e validação
defensiva. O resultado prático é um núcleo estável (ABC + testes LSP) e uma periferia extensível (duck typing),
com risco controlado.

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Validação das decisões da AF5.1

Na AF5.1 defini quatro pontos de polimorfismo no SCM para permitir evolução sem “engordar” o GestorCarreiras
com if/elif por regulamento, categoria ou exceções: (1) seleção de elegíveis via Promovivel, (2) ordenação via
Strategy (CriterioOrdenacaoElegiveis), (3) relatórios formais com ABC mínima (RelatorioSimulacao) e
capabilities segregadas (ExportavelJSON/RenderizavelTexto) e (4) relatórios experimentais por duck typing
(RelatorioVelocidadeCarreira). Na AF5.2, a implementação e a bateria de testes permitiram ligar estas decisões
a resultados concretos: menor acoplamento entre camadas, maior facilidade de testar o core isoladamente e
maior previsibilidade nos pontos críticos, sem impedir experimentação.
A Strategy formal para ordenação foi a decisão mais sólida. Na prática, tornou a mudança “antiguidade → mérito”
uma extensão por nova classe, sem alterar o motor (OCP/DIP), exatamente o cenário de evolução problemático
identificado na AF4.2/AF5.1. Mais importante, os testes validaram LSP ao garantir invariantes comportamentais:
qualquer critério só reordena, não remove/duplica elegíveis e não falha por dados em falta. Ou seja, o contrato
deixou de ser apenas “assinatura” e passou a ser “comportamento observável”. O fallback implementado é
evidência direta de prevenção da rutura (avaliações em falta causarem exceções e quebra do fluxo):

return sorted(elegiveis, key=lambda m: float(m.get("merito") or 0.0), reverse=True)

Este ponto mostrou-se adequado porque o impacto de erro é alto (promoções erradas ou bloqueio da
simulação) e o custo de formalização é baixo.
A introdução de Promovivel, apesar de não se encontrar exposta aqui a sua implementação, também se revelou
adequada, pois GestorCarreiras passou a depender apenas do mínimo necessário (ISP/DIP), reduzindo
dependência da hierarquia Militar e do seu estado completo (histórico, reserva, datas, etc.). Isto traduziu-se em
maior testabilidade, pudendo-se criar stubs/fantasmas para simular elegíveis e validar o comportamento do
motor sem depender de carregamento de dados ou regras específicas por categoria. Existe necessidade de
documentar exatamente o que é obrigatório (ex.: nim, quadro, posto_atual, eh_elegivel_promocao) para evitar
stubs “quase compatíveis” que geram falhas artificiais e confundem diagnóstico, como por exemplo:

class Promovivel(Protocol):
 @property
 def nim(self) -> int: ...
 def quadro(self) -> Any: ...
 def eh_elegivel_promocao(self, data_ref: date) -> bool: ...
 def posto_atual(self) -> Any: ...

A decisão que exigiu mais cuidado foi a aplicação de ISP nos relatórios formais. Ao separar capabilities, evitou-
se o problema clássico da AF4.2 (classes obrigadas a implementar métodos irrelevantes, produzindo “fake
methods” como return "" só para cumprir contrato). Em AF5.2, isso tornou as classes mais limpas e a
manutenção mais óbvia (“cada relatório faz o que promete”). No entanto, apareceu um ajuste inevitável: o
cliente (controlador/exportador) não pode assumir que todo o relatório exporta JSON ou gera texto. O consumo
teve de ser defensivo, com fallback para gerar_dados() quando a capability não existe, sob pena de criar um novo
cenário de rutura (“cliente chama método inexistente”):

if isinstance(rel, ExportavelJSON): return rel.exportar_json()
return json.dumps(rel.gerar_dados())

Este ajuste mostrou que ISP melhora o design, mas transfere responsabilidade para quem consome as
interfaces.
Por fim, o duck typing confirmou o trade-off planeado: é excelente para relatórios experimentais (flexibilidade e
extensão rápida sem tocar no core), mas expõe fragilidade ao “shape” do evento em runtime. A mitigação prática
foi degradação graciosa + testes de integração (o protocolo informal passa a ser “contrato executável” via testes,
como demonstrado em test_cenario_rutura_duck_evento_incompleto_nao_quebra).

Em síntese, a AF5.2 validou que ABC/interfaces devem proteger o núcleo (seleção/ordenação) pela exigência de
previsibilidade e substituibilidade, enquanto o duck typing é útil fora do core para inovação/experiência, desde
que o risco seja controlado por validação defensiva e testes de integração.

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Reflexão sobre princípios SOLID

A AF5.2 permitiu observar que os princípios SOLID não são “regras absolutas”, mas ferramentas a aplicar onde
o custo do erro é maior. No SCM, isto ficou claro ao distinguir o núcleo (promoções/seleção/ordenação) das
extensões (relatórios e protótipos).

OCP — Aberto/Fechado (extensibilidade sem modificar o core)

No contexto do SCM, o OCP foi aplicado sobretudo na ordenação de elegíveis. A mudança de “antiguidade” para
“mérito” (cenário evolutivo identificado na AF4.2/AF5.1) deixou de exigir alterações no GestorCarreiras, fazendo
com que a evolução passasse a ser feita por extensão, criando uma nova estratégia.
Tensão prática: aplicar OCP em excesso pode gerar “classe por tudo”. O limite aceite foi: abstrair apenas onde
a variabilidade é real e recorrente (políticas de ordenação e formatos de exportação), evitando criar interfaces
desnecessárias para comportamentos estáveis.

LSP — Substituição de Liskov (trocar implementações sem “surpresas”)

No SCM, LSP foi o princípio mais sensível porque falhas aqui não são “apenas erros”, podem gerar promoções
erradas. A AF5.2 mostrou que LSP não se garante só com assinatura: exige invariantes comportamentais
verificáveis (“só reordena; não filtra/duplica; não rebenta com dados em falta”).
A lógica de fallback foi uma medida direta para preservar substituibilidade:

key=lambda m: float(m.get("merito") or 0.0) # evita exceção quando falta avaliação

Tensão prática: tornar LSP “real” aumentou o número de testes e obrigou a documentar melhor o contrato (o
que a estratégia pode e não pode fazer). Em troca, o motor ficou mais previsível e menos frágil a mudanças de
regras.

ISP — Segregação de Interfaces (depender só do mínimo necessário)

O ISP foi aplicado em dois pontos:

1. Promovivel: o GestorCarreiras depende do mínimo para decidir elegibilidade/ordenar, reduzindo
acoplamento à hierarquia Militar (e facilitando stubs).

2. Relatórios por capabilities: separar ExportavelJSON e RenderizavelTexto evitou obrigar todos os
relatórios a implementar tudo (evitou “métodos fake”).

Exemplo de consumo correto (o cliente não assume capabilities):

if isinstance(rel, ExportavelJSON):
 return rel.exportar_json()
return json.dumps(rel.gerar_dados())

Tensão prática: ISP melhora clareza, mas desloca responsabilidade para o cliente (tem de verificar capabilities).
O risco é cair em excesso de interfaces pequenas e fragmentação. O limite aceite foi introduzir capabilities
apenas quando havia subclasses que claramente não precisavam do método.

Síntese das tensões (princípios vs praticidade)

A AF5.2 confirmou um padrão: OCP e ISP aumentam flexibilidade e reduzem acoplamento, mas podem
aumentar complexidade conceptual (mais classes/contratos). LSP aumenta segurança, mas exige esforço
adicional (invariantes + testes). A decisão prática foi aplicar rigor (ABC + testes LSP) no core e aceitar
flexibilidade controlada (duck typing + mitigação) nas extensões, equilibrando qualidade arquitetural com
pragmatismo de implementação.

Licenciatura em Eng. Informática
 Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Conclusão consolidada

O balanço entre conceção (AF5.1) e implementação (AF5.2) foi positivo: as decisões de desenho deixaram de
ser apenas “boas intenções” e passaram a produzir efeitos observáveis no código e nos testes. A AF5.2
confirmou que identificar, na AF5.1, pontos reais de variabilidade (seleção/ordenação de elegíveis,
exportação/representação de relatórios e relatórios experimentais) foi essencial para evitar crescimento do
núcleo por condicionais e para reduzir acoplamento entre camadas.

A arquitetura polimórfica planeada ficou validada em dois sentidos. Primeiro, no núcleo
(promoções/ordenação), a formalização por contratos (interfaces/ABC) e invariantes testáveis reforçou a
substituibilidade (LSP) e permitiu evolução por extensão (OCP), mantendo o motor dependente apenas do
mínimo necessário (ISP/DIP). Segundo, na periferia, o duck typing mostrou-se viável como “válvula de escape”
para protótipos e relatórios experimentais, desde que acompanhado por degradação graciosa e testes de
integração que funcionam como contrato executável.

As principais lições aprendidas foram: em Python, a segurança do polimorfismo não vem só de “tipos”, vem de
contratos comportamentais e testes; aplicar ISP melhora clareza, mas obriga o cliente a consumir capabilities
com disciplina (não assumir métodos); duck typing é poderoso, mas deve ser confinado a zonas não-críticas e
com mitigação explícita. Com isto, o sistema fica preparado para evoluções futuras (novos critérios
regulamentares, novos formatos de exportação, novos relatórios), com menor risco de regressões e com um
caminho claro: estender por novas classes onde o impacto é alto; experimentar por protocolos informais onde
o impacto é baixo.

