UMIVERSITDIA

ADERTA =

Licenciatura em Eng. Informatica
Programacgao por Objetos 25/26

Proposta de projeto

Simulador de Carreiras

Diagrama UML

«mixine

LogMixin

amixins

©se

+log_acao(mensagem: str): void
+obter_logs(): List<str>

+serializar_yami(): str

© «duck»
RelatorioVelocidadeCarreira
-base: i0Si a0
star_evento(evento): void
+Hinalizar(): void

+para_dict(): Dict<str, Any>
+gerar_texto(): str

COMPOSICAO + MIXINS
N&o herda de RelatorioSimulacao (usa composit
Reutiliza mixins para comportamento transversal
logging (LogMixin) + serializacao auxiliar (SerializavelMixin) § +registar_evento{evento: EventoCarreira): vord
/ +gerar_dados(): Dict<str, Any>
+exportar_json(): str

@ «<ABC>
- ’ RelatorioSimulacao
o: atributo base) J

s #eventos: List<EventoCarreira>

Demonstra: mixins n@o requerem ABC ,

@ «mixins
ValidacaoRegistoMixin
+validar_evento(evento: EventoCarreira): bool
“+registar._evento(evento: EventoCarreira): void
hama super().registar_evento(...)

@ RelatoriocTempoMedioNoPosto

DOIS MIXINS + ABC
class RelatorioTempaMedi ‘al o

MRO:

@ «interface»
Expo on

+gerar_dados(): Dict<str, Any>

+exportar_json(): str

+registar_evento(evento: EventoCarreira): void -

«interface»
@ RenderizavelTexto

+gerar_texto(): str

i i - Seriali ixin - LogMixin
RelatorioSimulacao - [Exportavel]SON + ObservadorEventos] - object

+ serializar_yami() é exclusivo do mixin
« exportar_json() € herdado (via RelatorioSimulacao)
Sem conflifo: métodos com nomes distintos

© «mixin»
RegistoBaseMixin

+registar_evento(evento: EventoCarreira): void

diciona a

MIXIN PURA
N&o herda da ABC

Fornece comportamento transversal (auditoria do registo de eventos) — +registar_evento(evento: EventoCarreira): void
Usa super() para colaboragao (padrio cooperativo) hama super().registar_evento(..

© «mixin»
AuditoriaRegistoMixin

@ RelatorioQuadro

+gerar_dados(): Dict<str, Any>
+gerar_texta(): str

HERANGA MULTIPLA
class i iadro(AL

ixin, Validac istoMixin, ioSi ao0)

MRO (simplificado):
RelatorioQuadro -+

ins —+ RelatorioSimulacao + ABCs - object

- Validac istoMixin -

MRO (completo):
RelatorioQuadro -

- ioSir a0 =
[Exportavel)SON + ObservadorEventos] - object

Uso consciente de super() (cadeia cooperativa em registar_evento)

ADERTA =

Tabela de decisées de reutilizagao

Licenciatura em Eng. Informatica
Programacao por Objetos 25/26

Principio SOLID

mesmo contrato

Funcionalidade Cenario evolutivo Tipo Relagao com AF5.2 em tenséo Trade-off aceite MRO prevista + analise
Rastreabilidade Aceita-se acrescentar | RelatoriofempoMedioNoPosto >
R N Motor cresce (regras, Independente da . o . ..
da simulagéao ~ L . logging transversal | SerializavelMixin > LogMixin =~

excegoOes, casos-limite) e é - ABC; complementa . . ~ o .
(debug de . . LogMixin o SRP vs DRY para evitar duplicagdo | RelatorioSimulacao - object
~ preciso registar passos / RelatorioSimulacao . L. .
promocgoes/rela . e ganhar | Analise: LogMixin cedo para registar
. decisoes sem alterar o contrato - -
torios) rastreabilidade antes de serializar/gerar dados
~ . Alternativa / Aceita-se RelatorioTempoMedioNoPosto >
Exportacao Surge necessidade de A . . - .
alternativa artilhar resultados com | SerializavelMixi complemento a coexisténcia de | SerializavelMixin > LogMixin =~
. P ExportaveUSON OCPvs ISP formatos, mantendo | RelatorioSimulacao > object Cuidado:
(YAML além de | ferramentas externas / n . .
. ~ . (capacidade cada formato como | YAML deve derivar de gerar_dados()
JSON) integragcdes além do JSON . . o« ”
opcional) capacidade separada | para evitar “duas verdades
Heranca RelatorioQuadro >
Registo robusto Eventos d.e. c.arre|~ra multlpl? com Usa a ABC como Aceita S(.B AqutorlaReg|§t0M|>f|r1
passam a exigir validagao mixins . complexidade de | ValidacaoRegistoMixin >
de eventos L L . contrato; mixins LSP vs T . .
. ~ forte e auditoria sem | (AuditoriaRegis . . MRO para pipeline | RegistoBaseMixin >
(validacao + . . . adicionam passos ao Complexidade , .. o . .
L duplicar cddigo em cada toMixin + . extensivel; cada mixin | RelatorioSimulacao »> object Cuidado:
auditoria) L. . . registar_evento() o
relatério ValidacaoRegis chama super() se um mixin ndo chamar super(), corta
toMixin) a cadeia
Necessidade de um
Relatério relatério novo | Composicéo + Néo herda de Aceita-se ndo ser | RelatorioVelocidadeCarreira >
K (RelatorioVelocidadeCarrei mixins RelatorioSimulacao; substituivel por | LogMixin > SerializavelMixin > object
experimental . L LSP vs L - ~ . s
ra) rapidamente, sem (LogMixin + usa base: - relatorio formal; | Cuidado: n&o € substituivel por
fora do contrato L .. o Flexibilidade . o .
formal engordar a ABC e sem | SerializavelMixi RelatorioSimulacao ganha-se liberdade de | RelatorioSimulacao (exige protocolo
obrigar todos a suportar o n) quando necessario evolugéao minimo)

Simulador de Carreiras

AbE RTA [] Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

Analise detalhada da MRO + Cenarios problematicos

Cenario Complexo: RelatorioQuadro com padrao diamante (mixins cooperativos)

class RelatorioSimulacao:
def gerar_dados(self): pass

class ValidacaoRegistoMixin:
def registar_evento(self, e): return super().registar_evento(e)

class AuditoriaRegistoMixin:
def registar_evento(self, e): return super().registar_evento(e)

class RegistoBaseMixin:
def registar_evento(self, e): self.eventos.append(e) # termina (agrega)

class RelatorioQuadro(ValidacaoRegistoMixin, AuditoriaRegistoMixin, RegistoBaseMixin, RelatorioSimulacao):
def __init_ (self): self.eventos=[]
def gerar_dados(self): return {"n": len(self.eventos)}

Analise da MRO com mro():
MRO calculada: RelatorioQuadro »> ValidacaoRegistoMixin > AuditoriaRegistoMixin > RegistoBaseMixin (base
comum do diamante (aparece uma unica vez)) > RelatorioSimulacao > object
Problemas identificados:
e Diamante (base comum): ambos os mixins chamam super(), convergindo em RegistoBaseMixin.
e Ordem critica: trocar ValidacaoRegistoMixin e AuditoriaRegistoMixin muda a sequéncia.
e Corte de cadeia: se um mixin néo fizer super(), o evento pode nunca ser agregado.
Solucao planeada:
e Regra: qualquer mixin que override registar_evento chama sempre super().registar_evento(e).
e Diamante controlado: RegistoBaseMixin aparece uma vez na MRO (C3), garantindo agregacao unica.
e Teste: validar RelatorioQuadro.__mro__ e que eventos e aud mudam como esperado.

Cenarios evolutivos problematicos identificados:

1. Explosao de mixins no “pipeline” de registar_evento() (relatdrios)

Cenario: SCM evolui e queremos acrescentar aos relatérios: AuditoriaRegistoMixin (quem/porqué do evento),
MetricasMixin (KPIs), CacheMixin (evitar recomputar gerar_dados()), além de LogMixin e ValidacaoRegistoMixin.
Problema: responsabilidades sobrepostas (observabilidade/telemetria) > a MRO fica dificil de prever e o
registar_evento() vira uma “pipeline” fragil:

class RelatorioQuadro(AuditoriaRegistoMixin, MetricasMixin, CacheMixin, LogMixin, ValidacaoRegistoMixin,
RelatorioSimulacao): ...

Sinal de Alerta: >3 mixins no mesmo dominio conceptual (logs/auditoria/métricas/cache) a intercetar o mesmo
método.

Solucao preferivel: Composicdo (ex.: lista de handlers de evento) / padrdo Observer / plugins
(“RelatorioSimulacao notifica observadores”).

2. Diamante “incontrolavel” ao misturar 2+ hierarquias abstratas

Cenario: Surge a necessidade de um relatério “completo” que seja simultaneamente: um RelatorioSimulacao
(ABC do dominio), “persistivel” (ex.: escrever para BD/ficheiro) via uma nova ABC Persistivel, e ainda com
LogMixin + SerializavelMixin.

Problema: Duas hierarquias convergentes + métodos com o mesmo nome (ex.: exportar() / guardar() /
gerar_dados()), criando diamantes e MRO ambigua: RelatorioSimulacao + Persistivel -~
RelatorioQuadroCompleto

Sinal de Alerta: 2+ ABCs independentes a convergir numa classe (cada uma com “métodos centrais”).
Solucao preferivel: Composigéo: o relatdrio tem um repositorio/persistencia (servigo), ndo é persisténcia (DIP:
injeta interface).

Simulador de Carreiras

A bE RTA | Licenciatura em Eng. Informatica

Programacao por Objetos 25/26

3. Cadeias longas de super() (incluindo __init_)

Cenario: Mixins passam a precisar de configuragdo/estado: ConfiguravelMixin(__init__(config, ...)),
MetricasMixin(__init__(stats, ...)), LogMixin(__init__(logger, ...)) em GestorCarreiras ou em RelatorioQuadro.
Problema: Um mixin que ndo chama super().__init__() (ou ndo propaga **kwargs) quebra toda a cadeia; bugs
aparecem “longe” da causa.

Sinal de Alerta: Erros de inicializagao dificeis de depurar + muitos mixins com estado proprio.

Solucao preferivel: Injegcao por composigéao (atributos logger, metrics, cache) ou Builder/fabrica para montar o
objeto, mantendo mixins preferencialmente stateless.

Sintese reflexiva consolidada:
Analise de Coexisténcia ABC + Mixins

No SCM, as ABC da AF5.2 (ex.: RelatorioSimulacao e capacidades opcionais como
ExportavelUSON/RenderizavelTexto) definem contratos de dominio: o minimo necessario para o motor e para os
consumidores dos resultados. Os mixins (LogMixin, SerializavelMixin, ValidacaoRegistoMixin,
AuditoriaRegistoMixin) acrescentam comportamentos transversais sem alterar esse contrato. A sinergia
principal € manter a ABC pequena (ISP) e estender por composigao de capacidades (OCP). O ponto de maior
risco € a coexisténcia de mixins que interceptam o mesmo método (registar_evento): cria-se um “pipeline” onde
aordem na MRO e o uso de super() passam a ser parte do design (diamante controlado).

Tensoes entre Principios SOLID

A tensdo mais evidente é SRP vs DRY: ao usar LogMixin, um relatério ganha responsabilidade extra
(observabilidade), mas evita duplicacao e facilita depuracéo e testes. Outra tensdo é ISP vs heranga multipla: a
classe final “engorda”, mas o objetivo € que isso resulte de capacidades realmente necessarias, mantendo o
contrato base simples e evitando obrigar todos os relatérios a suportar exportagdes/formatos que nao usam.
Em termos de KISS, a heranca multipla é aceite apenas enquanto a MRO for explicavel e previsivel; quando a
complexidade ultrapassa o beneficio, a composicao torna-se preferivel.

Decisoes de design e limites

A escolha foi: ABC para o nucleo do dominio (“o que o relatério é e garante”), mixins para funcionalidades
ortogonais (logging, serializacdo alternativa, passos adicionais de registo) e composicdo quando a
substituibilidade ndo é desejada ou quando a hierarquia fica confusa (ex.: RelatorioVelocidadeCarreira usa
base: RelatorioSimulacao, ndo herda). Critérios para candidatas a mixin: comportamento transversal, pequeno,
reutilizavel, pouco acoplado ao estado interno. Sinais de alerta para migrar para composi¢gao: >3 mixins a
intercetar o mesmo método, necessidade de estado pesado/__init__ em varios mixins, e dificuldade em
justificar a MRO num diagrama simples.

Preparacao para implementacao

A estratégia de implementagcdo serda cooperative multiple inheritance: qualquer mixin que override
registar_evento() chama sempre super().registar_evento(...), e existe um “ponto de fecho” (base de registo) que
garante a agregacao final. Avalidagdo da MRO na AF6.2 sera feita com inspegao de Classe.__mro__ e testes que
confirmem a sequéncia (evento agregado + validagao/auditoria/logs executados). A expectativa € um custo
moderado de complexidade (ordem/MRQO) em troca de maior reutilizagéo e extensibilidade, com compromisso
explicito de refatorar para composicao se os sinais de alerta aparecerem.

Simulador de Carreiras

