

Proposta de projeto

Simulador de Carreiras

Licenciatura em Eng. Informática
Programação por Objetos 25/26 2400250 – José Barão Vieira

Diagrama UML

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Tabela de decisões de reutilização

Funcionalidade Cenário evolutivo Tipo Relação com AF5.2
Princípio SOLID

em tensão
Trade-off aceite MRO prevista + análise

Rastreabilidade
da simulação
(debug de
promoções/rela
tórios)

Motor cresce (regras,
exceções, casos-limite) e é
preciso registar passos /
decisões

LogMixin

Independente da
ABC; complementa
RelatorioSimulacao

sem alterar o contrato

SRP vs DRY

Aceita-se acrescentar
logging transversal
para evitar duplicação
e ganhar
rastreabilidade

RelatorioTempoMedioNoPosto →
SerializavelMixin → LogMixin →
RelatorioSimulacao → object
Análise: LogMixin cedo para registar
antes de serializar/gerar dados

Exportação
alternativa
(YAML além de
JSON)

Surge necessidade de
partilhar resultados com
ferramentas externas /
integrações além do JSON

SerializavelMixi
n

Alternativa /
complemento a
ExportavelJSON

(capacidade
opcional)

OCP vs ISP

Aceita-se
coexistência de
formatos, mantendo
cada formato como
capacidade separada

RelatorioTempoMedioNoPosto →
SerializavelMixin → LogMixin →
RelatorioSimulacao → object Cuidado:
YAML deve derivar de gerar_dados()
para evitar “duas verdades”

Registo robusto
de eventos
(validação +
auditoria)

Eventos de carreira
passam a exigir validação
forte e auditoria sem
duplicar código em cada
relatório

Herança
múltipla com

mixins
(AuditoriaRegis

toMixin +
ValidacaoRegis

toMixin)

Usa a ABC como
contrato; mixins

adicionam passos ao
registar_evento()

LSP vs
Complexidade

Aceita-se
complexidade de
MRO para pipeline
extensível; cada mixin
chama super()

RelatorioQuadro →
AuditoriaRegistoMixin →
ValidacaoRegistoMixin →
RegistoBaseMixin →
RelatorioSimulacao → object Cuidado:
se um mixin não chamar super(), corta
a cadeia

Relatório
experimental
fora do contrato
formal

Necessidade de um
relatório novo
(RelatorioVelocidadeCarrei
ra) rapidamente, sem
engordar a ABC e sem
obrigar todos a suportar o
mesmo contrato

Composição +
mixins

(LogMixin +
SerializavelMixi

n)

Não herda de
RelatorioSimulacao;

usa base:
RelatorioSimulacao
quando necessário

LSP vs
Flexibilidade

Aceita-se não ser
substituível por
relatório formal;
ganha-se liberdade de
evolução

RelatorioVelocidadeCarreira →
LogMixin → SerializavelMixin → object
Cuidado: não é substituível por
RelatorioSimulacao (exige protocolo
mínimo)

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

Análise detalhada da MRO + Cenários problemáticos

Cenário Complexo: RelatorioQuadro com padrão diamante (mixins cooperativos)
class RelatorioSimulacao:
 def gerar_dados(self): pass

class ValidacaoRegistoMixin:
 def registar_evento(self, e): return super().registar_evento(e)

class AuditoriaRegistoMixin:
 def registar_evento(self, e): return super().registar_evento(e)

class RegistoBaseMixin:
 def registar_evento(self, e): self.eventos.append(e) # termina (agrega)

class RelatorioQuadro(ValidacaoRegistoMixin, AuditoriaRegistoMixin, RegistoBaseMixin, RelatorioSimulacao):
 def __init__(self): self.eventos=[]
 def gerar_dados(self): return {"n": len(self.eventos)}

Análise da MRO com mro():
MRO calculada: RelatorioQuadro → ValidacaoRegistoMixin → AuditoriaRegistoMixin → RegistoBaseMixin (base
comum do diamante (aparece uma única vez)) → RelatorioSimulacao → object
Problemas identificados:

• Diamante (base comum): ambos os mixins chamam super(), convergindo em RegistoBaseMixin.
• Ordem crítica: trocar ValidacaoRegistoMixin e AuditoriaRegistoMixin muda a sequência.
• Corte de cadeia: se um mixin não fizer super(), o evento pode nunca ser agregado.

Solução planeada:
• Regra: qualquer mixin que override registar_evento chama sempre super().registar_evento(e).
• Diamante controlado: RegistoBaseMixin aparece uma vez na MRO (C3), garantindo agregação única.
• Teste: validar RelatorioQuadro.__mro__ e que eventos e aud mudam como esperado.

Cenários evolutivos problemáticos identificados:

1. Explosão de mixins no “pipeline” de registar_evento() (relatórios)
Cenário: SCM evolui e queremos acrescentar aos relatórios: AuditoriaRegistoMixin (quem/porquê do evento),
MetricasMixin (KPIs), CacheMixin (evitar recomputar gerar_dados()), além de LogMixin e ValidacaoRegistoMixin.
Problema: responsabilidades sobrepostas (observabilidade/telemetria) → a MRO fica difícil de prever e o
registar_evento() vira uma “pipeline” frágil:
class RelatorioQuadro(AuditoriaRegistoMixin, MetricasMixin, CacheMixin, LogMixin, ValidacaoRegistoMixin,
RelatorioSimulacao): ...

Sinal de Alerta: >3 mixins no mesmo domínio conceptual (logs/auditoria/métricas/cache) a intercetar o mesmo
método.
Solução preferível: Composição (ex.: lista de handlers de evento) / padrão Observer / plugins
(“RelatorioSimulacao notifica observadores”).

2. Diamante “incontrolável” ao misturar 2+ hierarquias abstratas
Cenário: Surge a necessidade de um relatório “completo” que seja simultaneamente: um RelatorioSimulacao
(ABC do domínio), “persistível” (ex.: escrever para BD/ficheiro) via uma nova ABC Persistivel, e ainda com
LogMixin + SerializavelMixin.
Problema: Duas hierarquias convergentes + métodos com o mesmo nome (ex.: exportar() / guardar() /
gerar_dados()), criando diamantes e MRO ambígua: RelatorioSimulacao + Persistivel →
RelatorioQuadroCompleto
Sinal de Alerta: 2+ ABCs independentes a convergir numa classe (cada uma com “métodos centrais”).
Solução preferível: Composição: o relatório tem um repositorio/persistencia (serviço), não é persistência (DIP:
injeta interface).

Licenciatura em Eng. Informática
Programação por Objetos 25/26

Simulador de Carreiras 2400250 – José Barão Vieira

3. Cadeias longas de super() (incluindo __init__)
Cenário: Mixins passam a precisar de configuração/estado: ConfiguravelMixin(__init__(config, ...)),
MetricasMixin(__init__(stats, ...)), LogMixin(__init__(logger, ...)) em GestorCarreiras ou em RelatorioQuadro.
Problema: Um mixin que não chama super().__init__() (ou não propaga **kwargs) quebra toda a cadeia; bugs
aparecem “longe” da causa.
Sinal de Alerta: Erros de inicialização difíceis de depurar + muitos mixins com estado próprio.
Solução preferível: Injeção por composição (atributos logger, metrics, cache) ou Builder/fábrica para montar o
objeto, mantendo mixins preferencialmente stateless.

Síntese reflexiva consolidada:

Análise de Coexistência ABC + Mixins

No SCM, as ABC da AF5.2 (ex.: RelatorioSimulacao e capacidades opcionais como
ExportavelJSON/RenderizavelTexto) definem contratos de domínio: o mínimo necessário para o motor e para os
consumidores dos resultados. Os mixins (LogMixin, SerializavelMixin, ValidacaoRegistoMixin,
AuditoriaRegistoMixin) acrescentam comportamentos transversais sem alterar esse contrato. A sinergia
principal é manter a ABC pequena (ISP) e estender por composição de capacidades (OCP). O ponto de maior
risco é a coexistência de mixins que interceptam o mesmo método (registar_evento): cria-se um “pipeline” onde
a ordem na MRO e o uso de super() passam a ser parte do design (diamante controlado).

Tensões entre Princípios SOLID

A tensão mais evidente é SRP vs DRY: ao usar LogMixin, um relatório ganha responsabilidade extra
(observabilidade), mas evita duplicação e facilita depuração e testes. Outra tensão é ISP vs herança múltipla: a
classe final “engorda”, mas o objetivo é que isso resulte de capacidades realmente necessárias, mantendo o
contrato base simples e evitando obrigar todos os relatórios a suportar exportações/formatos que não usam.
Em termos de KISS, a herança múltipla é aceite apenas enquanto a MRO for explicável e previsível; quando a
complexidade ultrapassa o benefício, a composição torna-se preferível.

Decisões de design e limites

A escolha foi: ABC para o núcleo do domínio (“o que o relatório é e garante”), mixins para funcionalidades
ortogonais (logging, serialização alternativa, passos adicionais de registo) e composição quando a
substituibilidade não é desejada ou quando a hierarquia fica confusa (ex.: RelatorioVelocidadeCarreira usa
base: RelatorioSimulacao, não herda). Critérios para candidatas a mixin: comportamento transversal, pequeno,
reutilizável, pouco acoplado ao estado interno. Sinais de alerta para migrar para composição: >3 mixins a
intercetar o mesmo método, necessidade de estado pesado/__init__ em vários mixins, e dificuldade em
justificar a MRO num diagrama simples.

Preparação para implementação

A estratégia de implementação será cooperative multiple inheritance: qualquer mixin que override
registar_evento() chama sempre super().registar_evento(...), e existe um “ponto de fecho” (base de registo) que
garante a agregação final. A validação da MRO na AF6.2 será feita com inspeção de Classe.__mro__ e testes que
confirmem a sequência (evento agregado + validação/auditoria/logs executados). A expectativa é um custo
moderado de complexidade (ordem/MRO) em troca de maior reutilização e extensibilidade, com compromisso
explícito de refatorar para composição se os sinais de alerta aparecerem.

