
E-Fólio A: Divisibilidade por 4 e Não por 8 em Diferentes Bases

1. Números Inteiros em Notação Decimal

Lógica e Explicação

Um número inteiro decimal (𝑁) é um múltiplo de 4 se e somente se o número
formado pelos seus últimos dois dígitos (𝑏) for um múltiplo de 4.

Para que 𝑁 seja um múltiplo de 4, mas não um múltiplo de 8, precisamos
considerar duas condições que dependem do valor de 𝑏 :

1. 𝑵 é Múltiplo de 4: Os últimos dois dígitos, 𝑏, devem pertencer ao conjunto:
𝑀4 =

{00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96}

2. 𝑵 é NÃO Múltiplo de 8: 𝑁 não pode ser divisível por 8. A divisibilidade por 8
é determinada pela fórmula 𝑁 = 100𝑎 + 𝑏, onde 𝑎 são os dígitos que
precedem 𝑏. Como 100 = 12 × 8 + 4, a divisibilidade de 𝑁 por 8
depende da paridade de 𝑎 e do resto de 𝑏 por 8.

Isto leva a duas regras completas para N  ≡ 4  (mod 8) (ou seja, múltiplo de 4, mas
não de 8):

• Regra A (Múltiplos de 4 que não são Múltiplos de 8): O número 𝑏 é da
forma 8𝑘 + 4 (resto 4 na divisão por 8).

o 𝑏 ∈ {04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92}

o O número de centenas (𝑎) deve ser par (ou 0).

• Regra B (Múltiplos de 8): O número 𝑏 é da forma 8𝑘 (resto 0 na divisão por
8).

o 𝑏 ∈ {00, 08, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96}

o O número de centenas (𝑎) deve ser ímpar.

A expressão regular concentra-se nos últimos dois dígitos (𝑏), assumindo que 𝑁 é
um número positivo:

Regra: 𝑁 = ⋯ 𝑑1𝑑0

Onde: 𝑑1𝑑0 ∈ {04,12,20,28,36,44,52,60,68,76,84,92}

Prova formal:

Seja (𝑁) um inteiro positivo qualquer. Podemos escrever (𝑁) da seguinte forma:
𝑁 = 100𝑎 + 𝑏

onde (𝑏) é o número formado pelos dois últimos algarismos (0 ≤ 𝑏 ≤ 99) 𝑒 100𝑎
é o número formado por todos os algarismos anteriores (centenas, milhares, etc.).

Sabemos que: 100 = 8 × 12 + 4 . Assim, podemos reescrever (𝑁) como:

𝑁 = 𝑎(100) + 𝑏 = 𝑎(8 × 12 + 4) + 𝑏 = (8 × 12𝑎) + (4𝑎 + 𝑏)

É múltiplo de 4?

𝑁 = 4(25𝑎) + 𝑏

Como 4(25𝑎) é sempre um múltiplo de 4, conclui-se que (𝑁) é múltiplo de 4 se e
só se (𝑏) for múltiplo de 4. (Esta é a regra habitual de divisibilidade por 4.)

É múltiplo de 8?
𝑁 = (8 × 12𝑎) + (4𝑎 + 𝑏)

Como 8 × 12𝑎 é sempre múltiplo de 8, conclui-se que (𝑁) é múltiplo de 8 se e só
se (4𝑎 + 𝑏) for múltiplo de 8.

A condição: múltiplo de 4 mas não de 8

Condição 1 (Múltiplo de 4): (𝑏) tem de pertencer ao conjunto dos múltiplos de 4,
𝑀4.

Condição 2 (Não múltiplo de 8) : (4𝑎 + 𝑏) não pode ser múltiplo de 8.

Consideram-se dois casos para (𝑏 ∈ 𝑀4) :

Caso A: (𝑏) é múltiplo de 8 (por exemplo: (00, 08, 16, 24, …)

Se 𝑏 = 8𝑘 , então: 4𝑎 + 𝑏 = 4𝑎 + 8𝑘

A expressão 4𝑎 + 𝑏 é múltiplo de 8 se e só se 4𝑎 for múltiplo de 8, o que
acontece quando (𝑎) é um número par.

Se (𝑎) for ímpar, então (𝑁) será múltiplo de 4 mas não de 8.

Exemplo:

𝑎 = 1, 𝑏 = 08

𝑁 = 108

108 / 4 = 27

(108 / 8 = 13 , 𝑟𝑒𝑠𝑡𝑜 4

Caso B: (𝑏) não é múltiplo de 8 (por exemplo: (04, 12, 20, 28, …))

Se 𝑏 = 8𝑘 + 4 , então: 4𝑎 + 𝑏 = 4𝑎 + 8𝑘 + 4 = 4(𝑎 + 1) + 8𝑘

A expressão 4(𝑎 + 1) + 8𝑘 é múltiplo de 8 se e só se 4(𝑎 + 1) for múltiplo de 8, o
que acontece quando (𝑎 + 1) é par.

• Se (𝑎 + 1)) é par, então (𝑎) é ímpar, e (N) é múltiplo de 8.
• Se (𝑎 + 1) é ímpar, então (𝑎) é par, e (𝑁) não é múltiplo de 8.

Exemplo:

 𝑎 = 2, 𝑏 = 12

 𝑁 = 212

 212 / 4 = 53

212 / 8 = 26, 𝑟𝑒𝑠𝑡𝑜 4

Se os dois últimos algarismos pertencem à lista
{04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92}, então o número é sempre múltiplo de
4. Para que não seja múltiplo de 8, é ainda necessário que o algarismo das
centenas seja par ou inexistente.

Como a lista é, {04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92} temos 𝑏 = 8𝑘 + 4
logo , Se (𝑏) pertence à lista, então (𝑁) é sempre múltiplo de 4. Para que (𝑁) seja
múltiplo de 8, o algarismo das centenas (𝑎) tem de ser ímpar. Para que (𝑁) não
seja múltiplo de 8, o algarismo das centenas tem de ser par ou 𝑎 = 0. Todos os
números de dois algarismos da lista são múltiplos de 4 mas não de 8.

Expressão Regular (UNIX)

Em notação UNIX, é possível construir uma expressão regular válida para os
inteiros decimais que são múltiplos de 4 mas não de 8. No entanto, essa
expressão não realiza cálculo aritmético; ela codifica explicitamente as
consequências estruturais do critério de divisibilidade, exigindo a separação de
casos e enumeração de padrões.

Expressão (considerando a paridade de a):

Esta expressão é complexa e ultrapassa o limite da notação UNIX simples, pois a
verificação de paridade de 𝑎 (os dígitos que precedem os últimos dois) exige
lookarounds (que não existem na notação básica) ou uma enumeração exaustiva
de padrões:

Padrão 1 (Últimos 2 dígitos 8𝑘 + 4 e 𝑎 par)

Padrão 2 (Últimos 2 dígitos 8𝑘 e 𝑎 ímpar)

Como as expressões regulares UNIX simples não conseguem verificar a paridade
de um número arbitrariamente longo de dígitos,

Vamos assumir e problema e assumir que a expressão será construída para:

• Para números com 1 ou 2 algarismos, basta olhar para o próprio número.

• Para números com 3 ou mais algarismos, a divisibilidade por 8 depende do
algarismo das centenas.

Assim, criamos três grandes blocos no regex.

Últimos dois dígitos da forma

𝑏 = 8𝑘 + 4
Caso 1 — números com 1 ou 2 algarismos

Todos estes são automaticamente:

• múltiplos de 4

• não múltiplos de 8

Regex: ^(4|12|20|28|36|44|52|60|68|76|84|92)$

Caso 2 — números com 3 ou mais algarismos (algarismo das centenas par)

Aqui forçamos explicitamente:

• qualquer prefixo

• um dígito par imediatamente antes dos últimos dois

• últimos dois dígitos ≡ 4 (mod 8)

Regex: ^[0 − 9] ∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92)$

Caso 3 — números com 3 ou mais algarismos (um dígito ímpar imediatamente
antes dos últimos dois)

Aqui forçamos explicitamente:

• qualquer prefixo

• um dígito par imediatamente antes dos últimos dois

• últimos dois dígitos ≡ 4 (mod 8)

Regex: ^[0 − 9] ∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96)

Expressão (união dos casos)

^((4|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96))$

Esta expressão regular não ‘calcula’ divisibilidade; ela codifica diretamente as
consequências aritméticas do critério de divisibilidade por 4 e 8, respeitando as
limitações da notação regex UNIX.

Explicação da Construção (Expressão Simplificada):

• ^: Início da linha (garante que estamos a procurar a partir do início do
número).

• (4|12|20|28|36|44|52|60|68|76|84|92)
Primeiro caso: números com 1 ou 2 algarismos.

• | Operador de alternativa lógica (OU).

• ([0-9]*): Captura zero ou mais dígitos (0-9).

• (04|12|20|28|36|44|52|60|68|76|84|92): Um grupo de captura que verifica se
os últimos dois dígitos correspondem exatamente a um dos 12 pares que
são ≡ 4 (𝑚𝑜𝑑 8).

• [02468] = garante a par

• (04|12|20|28|36|44|52|60|68|76|84|92) Grupo que corresponde exatamente
aos dois últimos algarismos do número.

• $: Fim da linha (garante que os pares de dígitos acima são o final do
número).

Finalmente permitimos negativos usando -? Permite zero ou uma ocorrência do
sinal negativo e positivo.

Expressão Final:

^[+−]? ((4|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96))$

2. Números Inteiros em Notação Binária

Lógica e Explicação

Em notação binária, números negativos são representados exclusivamente por
bits (0 e 1), tipicamente em complemento para dois. Contudo, a interpretação do
sinal depende do comprimento da palavra binária. Como expressões regulares
não têm noção do bit mais significativo nem do comprimento total da palavra, não
é trivial, em geral, distinguir números binários positivos e negativos nem verificar
propriedades aritméticas em complemento para dois sem fixar previamente o
número de bits.

Então vamos ter que assumir opções, uma opção é assumir apenas números
positivos, seguiremos para já assumindo essa limitação.

Em notação binária (base 2), a divisibilidade por potências de 2 é extremamente
simples:

• Múltiplo de 4 (22): Um número binário é divisível por 2𝑘 se e só se terminar
em 𝑘 zeros. Como 4 = 22, o número tem que terminar em 00.

𝑁 = (… 𝑑2𝑑100)2

• NÃO Múltiplo de 8 (23): Um número binário é divisível por 8 = 23 se e só se
terminar em 000. Para não ser um múltiplo de 8, o número não pode
terminar em 000.

Seja 𝑁um inteiro positivo qualquer. Quando 𝑁é escrito em binário, podemos
representá-lo da seguinte forma:

𝑁 = (… 𝑑3𝑑2𝑑1𝑑0)2

onde 𝑑𝑖 ∈ {0,1}são os algarismos binários, e:

𝑁 = ⋯ + 𝑑3 ⋅ 23 + 𝑑2 ⋅ 22 + 𝑑1 ⋅ 21 + 𝑑0 ⋅ 20

Múltiplo de 4 (𝟐𝟐):

Um número é divisível por 2𝑘(como 4 = 22) se e só se os seus últimos 𝑘bits forem
zero.

Como 4 = 22, temos 𝑘 = 2.

Assim, 𝑁é múltiplo de 4 se os dois últimos bits forem 00:

𝑁 = (… 𝑑3𝑑2𝟎𝟎)2

Isto acontece porque:

𝑁 = (4 × um certo inteiro) + (os dois últimos bits)

e, se os dois últimos bits forem 00, o resto da divisão por 4 é zero.

Não múltiplo de 8 (𝟐𝟑):

Um número é divisível por 2𝑘(como 8 = 23) se e só se os seus últimos 𝑘bits forem
zero.

Como 8 = 23, temos 𝑘 = 3.

Logo, 𝑁é múltiplo de 8 se os três últimos bits forem 000.

Consequentemente, 𝑁não é múltiplo de 8 se os três últimos bits não forem 000.

Combinação das condições:

Para que um número seja múltiplo de 4 mas não múltiplo de 8, tem de satisfazer
simultaneamente as duas regras:

Regra 1: Terminar em 𝟎𝟎

𝑁 = (… 𝑑3𝟎𝟎)2
Regra 2: Não terminar em 𝟎𝟎𝟎

Combinando estas condições, os três últimos algarismos binários têm de ser:

𝑑2 𝑑1 𝑑0 Condic̒ões
? 𝟎 𝟎 Satisfaz a Regra 1 (múltiplo de 4)
𝟏 𝟎 𝟎 Satisfaz a Regra 2 (não é múltiplo de 8, pois 100 ≠ 000)

A única forma de terminar em 00 mas não terminar em 000é o terceiro algarismo a
contar do fim (𝑑2) ser 𝟏.

Assim, em binário, o número tem de terminar exatamente em 𝟏𝟎𝟎.

Esta regra em binário explica de forma elegante a lista decimal apresentada
anteriormente: 04,12,20,28, … Vejamos alguns números decimais e as suas
representações binárias:

DECIMAL BINÁRIO TERMINA EM DIVISÍVEL POR 4? DIVISÍVEL POR 8?

4 100 100 Sim Não

12 1100 100 Sim Não

20 10100 100 Sim Não

28 11100 100 Sim Não

36 100100 100 Sim Não

Expressão Regular (UNIX)

^[10] ∗ 100$

Explicação da Construção:

• ^: Início da linha.

• [10]*: Zero ou mais ocorrências dos dígitos binários 1 ou 0. (Isto abrange
qualquer comprimento para os dígitos que antecedem o padrão).

• 100: O padrão obrigatório. O número deve terminar exatamente com os
dígitos 100 (garantindo que é múltiplo de 4 e não é múltiplo de 8).

• $: Fim da linha.

Vamos agora assumir números negativos, considerando sempre as limitações
referidas anteriormente. Uma outra opção que poderíamos tomar é de se fixar o
número de bits, então já é possível proseguir.

Exemplo: 8 bits, complemento para dois: ^[01]{5}100$

Explicação:

• os 3 últimos bits 100 → múltiplo de 4, não de 8

• os 5 bits iniciais podem ser qualquer coisa

• MSB = 1 ⇒ negativo, MSB = 0 ⇒ positivo

 Mas só para 8 bits

3. Números Inteiros em Notação Hexadecimal

Lógica e Explicação

Em notação hexadecimal, números negativos são representados por
complemento para dois, sendo o sinal determinado pelo bit mais significativo.
Como o significado desse bit depende do comprimento total da palavra,
expressões regulares não conseguem trivialmente, em geral, distinguir números
positivos e negativos nem verificar propriedades aritméticas em hexadecimal sem
que o número de dígitos seja previamente fixado.

Em hexadecimal puro, tal como no binário:

• não existe sinal “−”
• números negativos são representados apenas por dígitos hexadecimais

• usando uma codificação, normalmente complemento para dois

Hexadecimal é apenas uma representação compacta do binário: cada dígito hex =
4 bits

Logo, tudo o que foi dito para o binário aplica-se integralmente a hexadecimal.

Então seguiremos com as mesmas presunções anteriores.

Em notação hexadecimal (base 16), a divisibilidade por 4 e 8 é determinada
apenas pelo valor do último dígito hexadecimal.

• Múltiplo de 4: O valor decimal do último dígito deve ser um múltiplo de 4.

Dígitos Múltiplos de 4: {0,4,8, 𝐶}

• NÃO Múltiplo de 8: O valor decimal do último dígito não pode ser um
múltiplo de 8.

Dígitos Múltiplos de 8: {0,8}

No sistema hexadecimal (base 16), os algarismos vão de 0a 9e depois de 𝐴até
𝐹(representando os valores decimais de 10a 15).

A lógica é semelhante à do sistema binário, mas como 4e 8são potências de 2, e
16também é uma potência de 2, a regra de divisibilidade envolve a observação do
último algarismo hexadecimal.

Múltiplo de 4:

Um número é múltiplo de 16/4 = 4 se e só se o seu último algarismo hexadecimal
representar um número que seja múltiplo de 4. Os algarismos hexadecimais (e os
seus valores decimais) que são múltiplos de 4 são:

• 0(decimal 0)

• 4(decimal 4)

• 8(decimal 8)

• 𝐶(decimal 12)

Isto significa que o último algarismo tem de ser par (0,2,4,6,8, 𝐴, 𝐶, 𝐸), mas, mais
precisamente, tem de ser divisível por 4, ou seja, 0,4,8ou 𝐶.

A regra “o último algarismo é par” é tecnicamente verdadeira, porque todo o
múltiplo de 4 é par, mas a regra correta e exata em hexadecimal é: “o último
algarismo é 0,4,8 ou 𝐶”.

Não múltiplo de 8:

Para que um número seja múltiplo de 8, o seu último algarismo hexadecimal tem
de representar um número que seja múltiplo de 8. Os algarismos hexadecimais
que são múltiplos de 8 são:

• 0(decimal 0)

• 8(decimal 8)

Assim, para que um número não seja múltiplo de 8, o seu último algarismo
hexadecimal não pode ser 0 nem 8.

Combinação das condições:

Para que um número seja múltiplo de 4 mas não múltiplo de 8, o último algarismo
hexadecimal tem de ser um múltiplo de 4, excluindo os múltiplos de 8.

Condição Algarismos hexadecimais (valor decimal)

Múltiplo de 4 0,4,8, 𝐶(0, 4, 8, 12)

NÃO múltiplo de 8 Não pode ser 0nem 8

Tomando a intersecção:

{0, 4, 8, 𝐶} ∖ {0, 8} = {4, 𝐶}

Os dígitos hexadecimais válidos são 4 e C.

Padrão Hexadecimal: … 𝑑0

Onde: 𝑑0 ∈ {4, 𝐶}

Verificação com congruências (módulo):

A condição final — “o último algarismo ≡ 4(mod8)” — é a forma mais formal de
expressar esta regra: O valor decimal do último algarismo hexadecimal tem de
deixar resto 4 quando dividido por 8.

Algarismo hex. Valor decimal Valor decimal (mod 8) Resultado

4 4 4(mod8) 4 (válido)

C 12 12(mod8) 4 (válido)

0 0 0(mod8) 0

8 8 8(mod8) 0

Os dois algarismos cujos valores decimais são congruentes com 4(mod8) são, de
facto, 4 e C.

Padrão consistente entre bases numéricas

Isto revela um padrão coerente entre diferentes bases:

• Decimal: os dois últimos algarismos têm de ser 4(mod8)(por exemplo,
04,12,20, …)

• Binário: o número tem de terminar em 100(que representa o valor 4)

• Hexadecimal: o último algarismo tem de ser 4ou 𝐶 (valores 4 e 12, ambos
4(mod8))

Expressão Regular (UNIX)

^[0 − 9𝐴 − 𝐹𝑎 − 𝑓] ∗ [4𝐶𝑐]$

Explicação da Construção:

• ^: Início da linha.

• [0-9A-Fa-f]*: Zero ou mais ocorrências de dígitos hexadecimais (0-9 e letras
A-F, tanto maiúsculas quanto minúsculas, para garantir robustez).

• [4Cc]: O padrão obrigatório para o último dígito. O número deve terminar
com um dígito que seja 4 o C (considerando a possibilidade de ser
minúsculo c).

• $: Fim da linha.

Agora vamos considerar um exemplo de negativos. Uma outra opção que
poderíamos tomar é de se fixar o complemento para dois com comprimento fixo.

Exemplo: 32 bits (8 dígitos hex)

^[0 − 9𝐴 − 𝐹𝑎 − 𝑓]{7}[4𝐶𝑐]$

Agora:

• os 7 primeiros dígitos definem o sinal

• o último nibble garante divisibilidade

 Apenas para 32 bits

