
E-Fólio A:  Divisibilidade por 4 e Não por 8 em Diferentes Bases 

 

1. Números Inteiros em Notação Decimal 

Lógica e Explicação 

Um número inteiro decimal (𝑁) é um múltiplo de 4 se e somente se o número 
formado pelos seus últimos dois dígitos (𝑏) for um múltiplo de 4. 

Para que 𝑁 seja um múltiplo de 4, mas não um múltiplo de 8, precisamos 
considerar duas condições que dependem do valor de 𝑏 : 

1. 𝑵 é Múltiplo de 4: Os últimos dois dígitos, 𝑏, devem pertencer ao conjunto: 
𝑀4 =

{00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96} 

2. 𝑵 é NÃO Múltiplo de 8: 𝑁 não pode ser divisível por 8. A divisibilidade por 8 
é determinada pela fórmula 𝑁 =  100𝑎 +  𝑏, onde 𝑎 são os dígitos que 
precedem 𝑏. Como 100 =  12 × 8 +  4, a divisibilidade de 𝑁 por 8 
depende da paridade de 𝑎 e do resto de 𝑏 por 8. 

Isto leva a duas regras completas para N  ≡ 4  (mod 8) (ou seja, múltiplo de 4, mas 
não de 8): 

• Regra A (Múltiplos de 4 que não são Múltiplos de 8): O número 𝑏 é da 
forma 8𝑘 + 4 (resto 4 na divisão por 8). 

o 𝑏 ∈ {04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92} 

o O número de centenas (𝑎) deve ser par (ou 0). 

• Regra B (Múltiplos de 8): O número 𝑏 é da forma 8𝑘 (resto 0 na divisão por 
8). 

o 𝑏 ∈ {00, 08, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96} 

o O número de centenas (𝑎) deve ser ímpar. 

A expressão regular concentra-se nos últimos dois dígitos (𝑏), assumindo que 𝑁 é 
um número positivo: 

Regra:  𝑁 = ⋯ 𝑑1𝑑0 

Onde:  𝑑1𝑑0 ∈ {04,12,20,28,36,44,52,60,68,76,84,92} 

Prova formal: 

Seja (𝑁) um inteiro positivo qualquer. Podemos escrever (𝑁) da seguinte forma: 
𝑁 =  100𝑎 +  𝑏  



onde ( 𝑏 ) é o número formado pelos dois últimos algarismos (0 ≤ 𝑏 ≤ 99) 𝑒 100𝑎 
é o número formado por todos os algarismos anteriores (centenas, milhares, etc.).  

Sabemos que: 100 =  8 × 12 +  4 . Assim, podemos reescrever (𝑁) como:  

𝑁 = 𝑎(100) + 𝑏 = 𝑎(8 × 12 + 4) + 𝑏 = (8 × 12𝑎) + (4𝑎 + 𝑏) 

É múltiplo de 4? 

𝑁 =  4(25𝑎)  +  𝑏 

Como 4(25𝑎)  é sempre um múltiplo de 4, conclui-se que (𝑁)  é múltiplo de 4 se e 
só se ( 𝑏 ) for múltiplo de 4. (Esta é a regra habitual de divisibilidade por 4.)  

É múltiplo de 8? 
𝑁 = (8 × 12𝑎) + (4𝑎 + 𝑏) 

 

Como  8 × 12𝑎 é sempre múltiplo de 8, conclui-se que (𝑁)  é múltiplo de 8 se e só 
se (4𝑎 +  𝑏)  for múltiplo de 8.  

A condição: múltiplo de 4 mas não de 8  

Condição 1 (Múltiplo de 4): ( 𝑏 ) tem de pertencer ao conjunto dos múltiplos de 4, 
𝑀4.  

Condição 2 (Não múltiplo de 8) : (4𝑎 +  𝑏) não pode ser múltiplo de 8.  

Consideram-se dois casos para (𝑏 ∈ 𝑀4) :  

Caso A: ( 𝑏 ) é múltiplo de 8 (por exemplo: ( 00, 08, 16, 24, … )  

Se  𝑏 =  8𝑘 , então:  4𝑎 +  𝑏 =  4𝑎 +  8𝑘  

A expressão 4𝑎 +  𝑏  é múltiplo de 8 se e só se 4𝑎  for múltiplo de 8, o que 
acontece quando ( 𝑎 ) é um número par.  

Se ( 𝑎 ) for ímpar, então (𝑁) será múltiplo de 4 mas não de 8.  

Exemplo:  

𝑎 =  1, 𝑏 =  08  

𝑁 =  108  

108 / 4 =  27   

(108 / 8 =  13 , 𝑟𝑒𝑠𝑡𝑜 4  

 

  



 

Caso B: ( 𝑏 ) não é múltiplo de 8  (por exemplo: ( 04, 12, 20, 28, … ))  

Se 𝑏 =  8𝑘 +  4 , então: 4𝑎 + 𝑏 = 4𝑎 + 8𝑘 + 4 = 4(𝑎 + 1) + 8𝑘 

A expressão 4(𝑎 + 1) + 8𝑘 é múltiplo de 8 se e só se  4(𝑎 + 1)  for múltiplo de 8, o 
que acontece quando (𝑎 +  1) é par.  

• Se (𝑎 +  1))  é par, então (𝑎) é ímpar, e ( N ) é múltiplo de 8.  
• Se (𝑎 +  1) é ímpar, então (𝑎) é par, e (𝑁) não é múltiplo de 8.  

Exemplo:  

 𝑎 =  2, 𝑏 =  12 

 𝑁 =  212 

 212 / 4 =  53 

212 / 8 =  26, 𝑟𝑒𝑠𝑡𝑜  4 

 

Se os dois últimos algarismos pertencem à lista 
{04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92}, então o número é sempre múltiplo de 
4. Para que não seja múltiplo de 8, é ainda necessário que o algarismo das 
centenas seja par ou inexistente. 

Como a lista é,  {04, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92} temos  𝑏 =  8𝑘 +  4 
logo , Se (𝑏) pertence à lista, então (𝑁) é sempre múltiplo de 4.  Para que (𝑁)  seja 
múltiplo de 8, o algarismo das centenas (𝑎) tem de ser ímpar.  Para que (𝑁)  não 
seja múltiplo de 8, o algarismo das centenas tem de ser par ou 𝑎 =  0.  Todos os 
números de dois algarismos da lista são múltiplos de 4 mas não de 8.  

Expressão Regular (UNIX) 

Em notação UNIX, é possível construir uma expressão regular válida para os 
inteiros decimais que são múltiplos de 4 mas não de 8. No entanto, essa 
expressão não realiza cálculo aritmético; ela codifica explicitamente as 
consequências estruturais do critério de divisibilidade, exigindo a separação de 
casos e enumeração de padrões. 

Expressão (considerando a paridade de a): 

Esta expressão é complexa e ultrapassa o limite da notação UNIX simples, pois a 
verificação de paridade de 𝑎 (os dígitos que precedem os últimos dois) exige 
lookarounds (que não existem na notação básica) ou uma enumeração exaustiva 
de padrões: 



Padrão 1 (Últimos 2 dígitos 8𝑘 + 4 e 𝑎 par) 

Padrão 2 (Últimos 2 dígitos 8𝑘 e 𝑎 ímpar) 

Como as expressões regulares UNIX simples não conseguem verificar a paridade 
de um número arbitrariamente longo de dígitos, 

Vamos assumir e problema e assumir que a expressão será construída para: 

• Para números com 1 ou 2 algarismos, basta olhar para o próprio número.  

• Para números com 3 ou mais algarismos, a divisibilidade por 8 depende do 
algarismo das centenas. 

Assim, criamos três  grandes blocos no regex. 

Últimos dois dígitos da forma 

𝑏 = 8𝑘 + 4 
Caso 1 — números com 1 ou 2 algarismos 

Todos estes são automaticamente: 

• múltiplos de 4 

• não múltiplos de 8 

Regex: ^(4|12|20|28|36|44|52|60|68|76|84|92)$ 

Caso 2 — números com 3 ou mais algarismos (algarismo das centenas par) 

Aqui forçamos explicitamente: 

• qualquer prefixo 

• um dígito par imediatamente antes dos últimos dois 

• últimos dois dígitos ≡ 4 (mod 8) 

Regex: ^[0 − 9] ∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92)$ 

Caso 3 — números com 3 ou mais algarismos (um dígito ímpar imediatamente 
antes dos últimos dois) 

Aqui forçamos explicitamente: 

• qualquer prefixo 

• um dígito par imediatamente antes dos últimos dois 

• últimos dois dígitos ≡ 4 (mod 8) 

Regex: ^[0 − 9] ∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96) 



 

Expressão (união dos casos) 

^( (4|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96))$ 

Esta expressão regular não ‘calcula’ divisibilidade; ela codifica diretamente as 
consequências aritméticas do critério de divisibilidade por 4 e 8, respeitando as 
limitações da notação regex UNIX. 

Explicação da Construção (Expressão Simplificada): 

• ^: Início da linha (garante que estamos a procurar a partir do início do 
número). 

• (4|12|20|28|36|44|52|60|68|76|84|92) 
Primeiro caso: números com 1 ou 2 algarismos. 

• | Operador de alternativa lógica (OU). 

• ([0-9]*): Captura zero ou mais dígitos (0-9). 

• (04|12|20|28|36|44|52|60|68|76|84|92): Um grupo de captura que verifica se 
os últimos dois dígitos correspondem exatamente a um dos 12 pares que 
são ≡ 4 (𝑚𝑜𝑑 8). 

• [02468] = garante a par 

• (04|12|20|28|36|44|52|60|68|76|84|92) Grupo que corresponde exatamente 
aos dois últimos algarismos do número. 

• $: Fim da linha (garante que os pares de dígitos acima são o final do 
número). 

Finalmente permitimos negativos usando -? Permite zero ou uma ocorrência do 
sinal negativo e positivo. 

Expressão Final: 

^[+−]? ( (4|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [02468](04|12|20|28|36|44|52|60|68|76|84|92) | [0 − 9]

∗ [13579](00|08|16|24|32|40|48|56|64|72|80|88|96))$ 

 

2. Números Inteiros em Notação Binária 

Lógica e Explicação 



Em notação binária, números negativos são representados exclusivamente por 
bits (0 e 1), tipicamente em complemento para dois. Contudo, a interpretação do 
sinal depende do comprimento da palavra binária. Como expressões regulares 
não têm noção do bit mais significativo nem do comprimento total da palavra, não 
é trivial, em geral, distinguir números binários positivos e negativos nem verificar 
propriedades aritméticas em complemento para dois sem fixar previamente o 
número de bits. 

Então vamos ter que assumir opções, uma opção é assumir apenas números 
positivos, seguiremos para já assumindo essa limitação. 

Em notação binária (base 2), a divisibilidade por potências de 2 é extremamente 
simples: 

• Múltiplo de 4 (22): Um número binário é divisível por 2𝑘 se e só se terminar 
em 𝑘 zeros. Como 4 = 22, o número tem que terminar em 00. 

𝑁 = (… 𝑑2𝑑100)2 

• NÃO Múltiplo de 8 ( 23 ): Um número binário é divisível por 8 = 23 se e só se 
terminar em 000. Para não ser um múltiplo de 8, o número não pode 
terminar em 000. 

 

Seja 𝑁um inteiro positivo qualquer. Quando 𝑁é escrito em binário, podemos 
representá-lo da seguinte forma: 

𝑁 = (… 𝑑3𝑑2𝑑1𝑑0)2 

onde 𝑑𝑖 ∈ {0,1}são os algarismos binários, e: 

𝑁 = ⋯ + 𝑑3 ⋅ 23 + 𝑑2 ⋅ 22 + 𝑑1 ⋅ 21 + 𝑑0 ⋅ 20 
 

Múltiplo de 4 (𝟐𝟐): 

Um número é divisível por 2𝑘(como 4 = 22) se e só se os seus últimos 𝑘bits forem 
zero. 

Como 4 = 22, temos 𝑘 = 2. 

Assim, 𝑁é múltiplo de 4 se os dois últimos bits forem 00: 

𝑁 = (… 𝑑3𝑑2𝟎𝟎)2 

Isto acontece porque: 

𝑁 = (4 × um certo inteiro) + (os dois últimos bits) 



e, se os dois últimos bits forem 00, o resto da divisão por 4 é zero. 

Não múltiplo de 8 (𝟐𝟑): 

Um número é divisível por 2𝑘(como 8 = 23) se e só se os seus últimos 𝑘bits forem 
zero. 

Como 8 = 23, temos 𝑘 = 3. 

Logo, 𝑁é múltiplo de 8 se os três últimos bits forem 000. 

Consequentemente, 𝑁não é múltiplo de 8 se os três últimos bits não forem 000. 

Combinação das condições: 

Para que um número seja múltiplo de 4 mas não múltiplo de 8, tem de satisfazer 
simultaneamente as duas regras: 

Regra 1: Terminar em 𝟎𝟎 

𝑁 = (… 𝑑3𝟎𝟎)2 
Regra 2: Não terminar em 𝟎𝟎𝟎 

Combinando estas condições, os três últimos algarismos binários têm de ser:  

𝑑2 𝑑1 𝑑0 Condic̒ões
? 𝟎 𝟎 Satisfaz a Regra 1 (múltiplo de 4)
𝟏 𝟎 𝟎 Satisfaz a Regra 2 (não é múltiplo de 8, pois 100 ≠ 000 )

 

 

A única forma de terminar em 00 mas não terminar em 000é o terceiro algarismo a 
contar do fim (𝑑2) ser 𝟏. 

Assim, em binário, o número tem de terminar exatamente em 𝟏𝟎𝟎. 

Esta regra em binário explica de forma elegante a lista decimal apresentada 
anteriormente: 04,12,20,28, … Vejamos alguns números decimais e as suas 
representações binárias: 

DECIMAL BINÁRIO TERMINA EM DIVISÍVEL POR 4? DIVISÍVEL POR 8? 

4 100 100 Sim Não 

12 1100 100 Sim Não 

20 10100 100 Sim Não 

28 11100 100 Sim Não 

36 100100 100 Sim Não 

 



Expressão Regular (UNIX) 

^[10] ∗ 100$ 

Explicação da Construção: 

• ^: Início da linha. 

• [10]*: Zero ou mais ocorrências dos dígitos binários 1 ou 0. (Isto abrange 
qualquer comprimento para os dígitos que antecedem o padrão). 

• 100: O padrão obrigatório. O número deve terminar exatamente com os 
dígitos 100 (garantindo que é múltiplo de 4 e não é múltiplo de 8). 

• $: Fim da linha. 

 

Vamos agora assumir números negativos, considerando sempre as limitações 
referidas anteriormente. Uma outra opção que poderíamos tomar é de se fixar o 
número de bits, então já é possível proseguir. 

Exemplo: 8 bits, complemento para dois: ^[01]{5}100$ 

Explicação: 

• os 3 últimos bits 100 → múltiplo de 4, não de 8 

• os 5 bits iniciais podem ser qualquer coisa 

• MSB = 1 ⇒ negativo, MSB = 0 ⇒ positivo 

    Mas só para 8 bits 

 

3. Números Inteiros em Notação Hexadecimal 

Lógica e Explicação 

Em notação hexadecimal, números negativos são representados por 
complemento para dois, sendo o sinal determinado pelo bit mais significativo. 
Como o significado desse bit depende do comprimento total da palavra, 
expressões regulares não conseguem trivialmente, em geral, distinguir números 
positivos e negativos nem verificar propriedades aritméticas em hexadecimal sem 
que o número de dígitos seja previamente fixado. 

Em hexadecimal puro, tal como no binário:  

• não existe sinal “−” 
• números negativos são representados apenas por dígitos hexadecimais 



• usando uma codificação, normalmente complemento para dois 

Hexadecimal é apenas uma representação compacta do binário: cada dígito hex = 
4 bits 

Logo, tudo o que foi dito para o binário aplica-se integralmente a hexadecimal. 

Então seguiremos com as mesmas presunções anteriores. 

Em notação hexadecimal (base 16), a divisibilidade por 4 e 8 é determinada 
apenas pelo valor do último dígito hexadecimal. 

• Múltiplo de 4: O valor decimal do último dígito deve ser um múltiplo de 4. 

Dígitos Múltiplos de 4: {0,4,8, 𝐶} 

• NÃO Múltiplo de 8: O valor decimal do último dígito não pode ser um 
múltiplo de 8. 

Dígitos Múltiplos de 8: {0,8} 

 

No sistema hexadecimal (base 16), os algarismos vão de 0a 9e depois de 𝐴até 
𝐹(representando os valores decimais de 10a 15). 

A lógica é semelhante à do sistema binário, mas como 4e 8são potências de 2, e 
16também é uma potência de 2, a regra de divisibilidade envolve a observação do 
último algarismo hexadecimal. 

Múltiplo de 4: 

Um número é múltiplo de 16/4 = 4 se e só se o seu último algarismo hexadecimal 
representar um número que seja múltiplo de 4. Os algarismos hexadecimais (e os 
seus valores decimais) que são múltiplos de 4 são: 

• 0(decimal 0) 

• 4(decimal 4) 

• 8(decimal 8) 

• 𝐶(decimal 12) 

Isto significa que o último algarismo tem de ser par (0,2,4,6,8, 𝐴, 𝐶, 𝐸), mas, mais 
precisamente, tem de ser divisível por 4, ou seja, 0,4,8ou 𝐶. 

A regra “o último algarismo é par” é tecnicamente verdadeira, porque todo o 
múltiplo de 4 é par, mas a regra correta e exata em hexadecimal é: “o último 
algarismo é 0,4,8 ou 𝐶”. 



Não múltiplo de 8: 

Para que um número seja múltiplo de 8, o seu último algarismo hexadecimal tem 
de representar um número que seja múltiplo de 8. Os algarismos hexadecimais 
que são múltiplos de 8 são: 

• 0(decimal 0) 

• 8(decimal 8) 

Assim, para que um número não seja múltiplo de 8, o seu último algarismo 
hexadecimal não pode ser 0 nem 8. 

Combinação das condições: 

Para que um número seja múltiplo de 4 mas não múltiplo de 8, o último algarismo 
hexadecimal tem de ser um múltiplo de 4, excluindo os múltiplos de 8. 

Condição Algarismos hexadecimais (valor decimal) 

Múltiplo de 4 0,4,8, 𝐶(0, 4, 8, 12) 

NÃO múltiplo de 8 Não pode ser 0nem 8 

Tomando a intersecção: 

{0, 4, 8, 𝐶}  ∖ {0, 8}  =  {4, 𝐶} 

Os dígitos hexadecimais válidos são 4 e C. 

Padrão Hexadecimal:  … 𝑑0 

Onde:  𝑑0 ∈ {4, 𝐶} 

 
Verificação com congruências (módulo): 

A condição final — “o último algarismo ≡ 4(mod8)” — é a forma mais formal de 
expressar esta regra: O valor decimal do último algarismo hexadecimal tem de 
deixar resto 4 quando dividido por 8. 

Algarismo hex. Valor decimal Valor decimal (mod 8) Resultado 

4 4 4(mod8) 4 (válido) 

C 12 12(mod8) 4 (válido) 

0 0 0(mod8) 0 

8 8 8(mod8) 0 



Os dois algarismos cujos valores decimais são congruentes com 4(mod8) são, de 
facto, 4 e C. 

Padrão consistente entre bases numéricas 

Isto revela um padrão coerente entre diferentes bases: 

• Decimal: os dois últimos algarismos têm de ser 4(mod8)(por exemplo, 
04,12,20, …) 

• Binário: o número tem de terminar em 100(que representa o valor 4) 

• Hexadecimal: o último algarismo tem de ser 4ou 𝐶 (valores 4 e 12, ambos 
4(mod8)) 

 

Expressão Regular (UNIX) 

^[0 − 9𝐴 − 𝐹𝑎 − 𝑓] ∗ [4𝐶𝑐]$ 

Explicação da Construção: 

• ^: Início da linha. 

• [0-9A-Fa-f]*: Zero ou mais ocorrências de dígitos hexadecimais (0-9 e letras 
A-F, tanto maiúsculas quanto minúsculas, para garantir robustez). 

• [4Cc]: O padrão obrigatório para o último dígito. O número deve terminar 
com um dígito que seja 4 o C (considerando a possibilidade de ser 
minúsculo c). 

• $: Fim da linha. 

 

Agora vamos considerar um exemplo de negativos. Uma outra opção que 
poderíamos tomar é de se fixar o complemento para dois com comprimento fixo. 

Exemplo: 32 bits (8 dígitos hex) 

^[0 − 9𝐴 − 𝐹𝑎 − 𝑓]{7}[4𝐶𝑐]$ 

Agora: 

• os 7 primeiros dígitos definem o sinal 

• o último nibble garante divisibilidade 

    Apenas para 32 bits 

 


