

E-fólio B | Folha de resolução para E-fólio

Aberta

UNIDADE CURRICULAR: FÍSICA GERAL

CÓDIGO: 21048

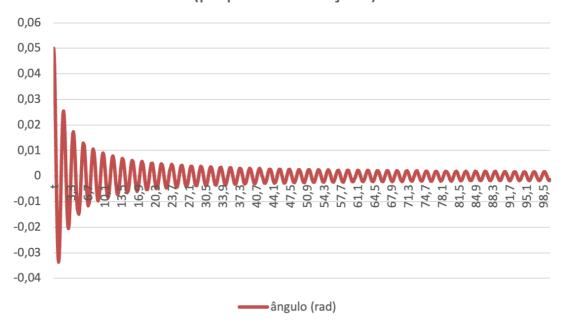
DOCENTE: Nuno Sousa/Ana Valadares

A preencher pelo estudante

ANO LETIVO: 2022-23

TRABALHO / RESOLUÇÃO:

Isolando a 2ª derivada do ângulo temos


$$\frac{d^2\theta}{dt^2} = -\operatorname{sgn}\left(\frac{d\theta}{dt}\right) \cdot \frac{bL}{m} \left(\frac{d\theta}{dt}\right)^2 - \frac{g}{L}\theta$$

Integrando para os valores do enunciado vem

t	ângulo (rad)	w (rad/s)	k1x	k1v	k2x	k2v
0	0,05	0	0	-0,49	-0,049	-0,4732894
0,1	0,04755	-0,0481645	-0,0481645	-0,4498445	-0,0931489	-0,3584003
0,2	0,04048433	-0,0885767	-0,0885767	-0,3421407	-0,1227908	-0,2050038
0,3	0,02991596	-0,1159339	-0,1159339	-0,1996315	-0,1358971	-0,0510267
0,4	0,01732441	-0,1284668	-0,1284668	-0,0549159	-0,1339584	0,08101164
0,5	0,00420314	-0,1271621	-0,1271621	0,07135108	-0,120027	0,18369469
()						
99,9	-0,0016418	0,00158387	0,00158387	0,0160725	0,00319112	0,01446689
100	-0,0014031	0,00311084	0,00311084	0,01368286	0,00447913	0,01056195

Em formato gráfico temos

Pêndulo esférico com arrasto quadrático (pequenas oscilações)

O comportamento do pêndulo é típico de um sistema com arrasto proporcional à velocidade: decaimento rápido da energia (e amplitude) enquanto a velocidade é grande, seguido de um decaimento lento quando a velocidade diminui.

É interessante de notar que o decaimento fica bastante lento quando a velocidade angular diminui. Isto contrasta com uma situação de arrasto linear, em que o decaimento é mais lento no início, mas mais rápido no final.

Isto acontece porque o quadrado da velocidade é grande inicialmente, mas muito menor do que a velocidade quando esta anda próxima de zero. I.e.: $v^2 \gg v$ para v grande, $v^2 \ll v$ para v pequeno. Ou seja, o arrasto começa muito forte, mas praticamente que se anula para baixas velocidades e o sistema passa a ter um comportamento quase idêntico a um oscilador harmónico, levando muito, muito tempo a imobilizar-se, como é visível da figura.

Deixa-se ao estudante curioso comparar a situação com a de arrasto linear (mesma ED, retirando o quadrado da 2ª parcela).