

p-Fólio

U.C. 21010

Arquitectura de Computadores

05 de fevereiro de 2015

INSTRUÇÕES

- O tempo de resolução do p-fólio é de uma hora e trinta minutos (90 minutos)...
- O estudante deverá responder à prova na folha de ponto e preencher o cabeçalho e todos os espaços reservados à sua identificação, com letra legível. No final da prova é permitido ao estudante levar o enunciado.
- Verifique no momento da entrega da(s) folha(s) de ponto se todas as páginas estão rubricadas pelo vigilante. Caso necessite de mais do que uma folha de ponto, deverá numerá-las no canto superior direito.
- · Utilize unicamente tinta azul ou preta.
- Em hipótese alguma serão aceites folhas de ponto dobradas ou danificadas. Excluise, para efeitos de classificação, toda e qualquer resposta apresentada em folhas de rascunho.
- A prova é SEM CONSULTA.
- Não é permitida a utilização de calculadora durante a execução do exame.
- Os telemóveis deverão ser desligados durante toda a prova e os objectos pessoais deixados em local próprio da sala de exame.
- A prova é constituída por 4 páginas (4 Grupos) e termina com a palavra FIM.
 Verifique o seu exemplar e, caso encontre alguma anomalia, dirija-se ao professor vigilante nos primeiros 15 minutos da mesma, pois qualquer reclamação sobre defeito(s) de formatação e/ou de impressão que dificultem a leitura não será aceite depois deste período.
- A cotação total de cada Grupo é de 3 valores, sendo a cotação de cada uma das questões indicada junto do enunciado da mesma, entre [].
- As suas respostas devem ser claras, indicando todos os passos seguidos na resolução de cada questão. Resultados apresentados sem justificação poderão incorrer num desconto de ½ da cotação total da questão.

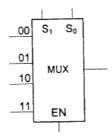
Grupo I (3 valores)

1. [1.5] Considere uma função lógica F(A,B,C,D), em que A é a variável de maior peso e D a variável de menor peso. A distribuição de mintermos (m) e indiferenças (md) da função F(A,B,C,D) é a seguinte:

$$\sum m (4,5,11,12,14) + \sum md(1,7,15)$$

Construa o mapa de Karnaugh e simplifique a função de modo a obter uma soma de produtos.

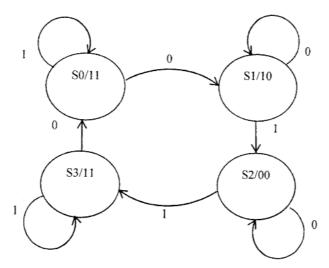
NOTA: Na sua resolução marque os laços utilizados no mapa, e faça corresponder cada termo da função resultante com o laço que lhe dá origem. Caso contrário a resposta não se considera justificada.


- 2. [0.5] Represente o número E05h em base 8.
- 3. [1] Represente o número -19 em binário com 8 bits, utilizando a técnica de complemento para 2.

Grupo II (3 valores)

Considere a seguinte função lógica de três variáveis F(A,B,C):

$$F(A,B,C) = A(\overline{(B+C)\overline{C}} + \overline{B}C) + \overline{A}\overline{B}C$$


- 1. [1.5] Simplifique algebricamente a função F.
- 2. [1.5] Implemente a função recorrendo a um multiplexer de 2 variáveis de selecção.

Grupo III (3 valores)

Considere o Diagrama de Estados seguinte:

Pretende-se construir um circuito digital síncrono que implemente este diagrama, utilizando flip-flops tipo D.

- 1. [2] Construa a tabela de transição de estados correspondente ao diagrama de estados.
- 2. [1] Simplifique as variáveis de estado.

Grupo IV (3 valores)

1. [3] Elabore uma rotina no assembly do P3 que receba um montante em cêntimos no registo R1, e determina o número de cada moeda em circulação necessário para perfazer esse montante.

As moedas a considerar são as moedas correntemente em circulação: 1 cêntimo, 2 cêntimos, 5 cêntimos, 10 cêntimos, 20 cêntimos, 50 cêntimos, 10 cêntimos) e 20 cêntimos).

Pretende-se que o número total de moedas seja o menor possível.

A forma de apresentação das saídas deve ser a seguinte: no endereço armazenado no registo R2 guarda-se o número de moedas de 1 cêntimo, no seguinte (R2 +1) o número de moedas de 2 cêntimos e assim sucessivamente até R2+7 (moedas de 2€).

Anexo

Primeiras potências de 2:

1	2	4	8	16	32	64	128
256	512	1024	2048	4096	8192	16384	32768

Conjunto de Instruções do Processador P3:

Aritméticas	Lógicas	Deslocamento	Controlo de Fluxo	Transferência de Dados	Diversas
NEG	COM	SHR	BR	MOV	NOP
INC	AND	SHL	BR.cond	MVBH	ENI
DEC	OR	SHRA	JMP	MVBL	DSI
ADD	XOR	SHLA	JMP.cond	XCH	STC
ADDC	TEST	ROR	CALL	PUSH	CLC
SUB		ROL	CALL.cond	POP	CMC
SUBB		RORC	RET		
CMP	Ī	ROLC	RETN		
MUL			RTI		
DIV			INT		

Conjunto de Condições de Salto:

Condição	Mnemónica		
Zero	Z		
Não Zero	NZ		
Transporte (Carry)	С		
Não Transporte	NC		
Negativo	N		
Não Negativo	NN		
Excesso (Overflow)	0		
Não Excesso	NO		
Positivo	P		
Não Positivo	NP		
Interrupção	I		
Não Interrupção	NI		

FIM