
Página 1 de 8

UNIDADE CURRICULAR: Sistemas Distribuídos

CÓDIGO: 21108

DOCENTE: Nelson Russo

A preencher pelo estudante

NOME: Luís Carlos Crispim Pereira

N.º DE ESTUDANTE: 2300163

CURSO: Licenciatura Engenharia de Informática

DATA DE ENTREGA: 20/05/25

Página 2 de 8

TRABALHO / RESOLUÇÃO:

Questão 3.1:
Avalie o impacto da utilização de middleware orientado a mensagens (como o Apache Kafka ou

RabbitMQ) na construção de Sistemas Distribuídos escaláveis e resilientes. Que desafios

surgem na garantia da ordem e entrega das mensagens?

Resposta 3.1:
A adoção de middleware orientado a mensagens (MOM) tornou-se um elemento central na

construção de Sistemas Distribuídos modernos. Plataformas como Apache Kafka e RabbitMQ
fornecem mecanismos de comunicação assíncrona e desacoplada entre componentes. Esta

abordagem promove a escalabilidade horizontal e a resiliência a falhas, características

fundamentais em arquiteturas de larga escala (Coulouris et al., 2011).

Estes sistemas baseiam-se no modelo publish-subscribe ou em filas de mensagens, em que

produtores enviam dados para tópicos ou filas e os consumidores processam-nos de forma

independente. Esta separação temporal e lógica entre produtores e consumidores permite que

os sistemas evoluam e escalem autonomamente. Além disso, reduz o acoplamento entre
componentes e facilita a tolerância a falhas (Hohpe & Woolf, 2003).

O Apache Kafka, por exemplo, é amplamente utilizado em plataformas como LinkedIn e Netflix

devido à sua elevada taxa de throughput e ao armazenamento persistente de logs distribuídos.

Este middleware assegura durabilidade, replicação entre brokers e tolerância a falhas de nós

individuais. Por sua vez, o RabbitMQ é mais orientado a aplicações empresariais e destaca-se

pela flexibilidade no encaminhamento de mensagens e pelo suporte a múltiplos protocolos, como

AMQP e MQTT. Este último é ideal em sistemas que exigem compatibilidade heterogénea

(Coulouris et al., 2011).
Apesar das vantagens, surgem desafios importantes ao nível da entrega e da ordenação das

mensagens. Um dos principais problemas é a garantia da ordem. No Kafka, a ordem só é

garantida dentro de uma partição específica. Se forem utilizadas múltiplas partições para

paralelismo, a ordem global perde-se. Este comportamento exige uma arquitetura consciente do

particionamento e, em muitos casos, lógica adicional na aplicação para reconstruir sequências

(Boykin & Ritchie, 2020).

Outro desafio é a entrega garantida, frequentemente classificada em três níveis: at-most-once,

at-least-once e exactly-once. Por padrão, o Kafka opera com semântica at-least-once, o que
pode originar duplicação. Já o suporte a exactly-once implica compromissos em termos de

desempenho, exigindo coordenação entre produtor, broker e consumidor (Kreps, 2014). O

RabbitMQ, com mecanismos de confirmação e filas persistentes, tenta mitigar perdas, mas

continua vulnerável em falhas abruptas.

A resiliência global depende também da replicação e do failover automático. Empresas como

Uber e Spotify operam clusters Kafka com múltiplos brokers e coordenação via Zookeeper.

Contudo, estas infraestruturas requerem configuração cuidada e monitorização constante, com
recurso a ferramentas como Prometheus e Grafana.

Página 3 de 8

Em síntese, middleware como Kafka e RabbitMQ são pilares fundamentais para sistemas

escaláveis e tolerantes a falhas. No entanto, introduzem complexidades na ordenação,

duplicação e entrega fiável de mensagens. O sucesso da sua utilização depende de decisões

arquitetónicas conscientes sobre partições, semântica de entrega e mecanismos de

recuperação.

Referências Bibliográficas 3.1:
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and

Design (5th ed.). Addison-Wesley.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley.

Boykin, P., & Ritchie, J. (2020). Kafka: The Definitive Guide (2nd ed.). O’Reilly Media.

Kreps, J. (2014). I Heart Logs: Event Data, Stream Processing, and Data Integration. O’Reilly

Media.

Questão 3.2:
Considere a integração de serviços heterogéneos utilizando middleware baseado em Web

Services. Explique como os padrões SOAP e REST abordam a interoperabilidade e segurança

entre diferentes domínios organizacionais.

Resposta 3.2:
A integração de serviços heterogéneos em ambientes distribuídos é um desafio fundamental nos

sistemas modernos. Neste contexto, o middleware baseado em Web Services desempenha um

papel central, permitindo que componentes desenvolvidos em diferentes plataformas, linguagens

ou localizações possam comunicar de forma padronizada. Os dois principais paradigmas

utilizados são SOAP (Simple Object Access Protocol) e REST (Representational State Transfer),

ambos com abordagens distintas à interoperabilidade e à segurança (Coulouris et al., 2011).

O padrão SOAP é uma especificação formal baseada em XML, com suporte a contratos de

interface através de WSDL (Web Services Description Language). Esta abordagem é
particularmente robusta em ambientes empresariais complexos, onde são necessários elevados

níveis de interoperabilidade, definição rigorosa de serviços e suporte a transações distribuídas.

A sua formalização facilita a comunicação entre organizações que utilizam tecnologias muito

distintas, como Java EE e .NET, assegurando uma descrição exata das operações e dos tipos

de dados. SOAP é frequentemente usado em contextos financeiros, serviços governamentais e

sistemas críticos, onde a padronização e o controlo rigoroso das mensagens são prioritários

(Alonso et al., 2004).
A nível de segurança, SOAP é compatível com WS-Security, um conjunto de normas que

suportam autenticação, assinatura digital, criptografia de mensagens e controle de políticas de

acesso. Estas capacidades tornam SOAP adequado para cenários que exigem

confidencialidade, integridade e não repúdio. Um exemplo comum é a integração de serviços

Página 4 de 8

bancários ou hospitalares que necessitam de logs auditáveis e proteção em profundidade. No

entanto, esta segurança tem um custo, uma vez que o processamento XML e a sobrecarga das

mensagens SOAP podem impactar negativamente a performance (Coulouris et al., 2011).

Em contraste, o modelo REST não se baseia em XML nem exige contratos formais. É um estilo

arquitetural que utiliza os métodos padrão do protocolo HTTP (GET, POST, PUT, DELETE) para

operar sobre recursos identificados por URIs. A simplicidade do REST favorece a escalabilidade
e o desempenho, sendo amplamente utilizado em APIs públicas e aplicações móveis. A sua

interoperabilidade baseia-se em padrões amplamente aceites como JSON e HTTP, o que facilita

a adoção rápida em contextos com menor necessidade de formalização. Por exemplo,

plataformas como Twitter, GitHub e Google Maps oferecem APIs RESTful para acesso a

funcionalidades externas (Newman, 2015).

Em termos de segurança, REST recorre maioritariamente a mecanismos do próprio HTTP, como

TLS/SSL, autenticação básica ou tokens OAuth. Embora estas soluções sejam adequadas para

muitas aplicações, oferecem menor granularidade de controlo em comparação com WS-Security.
Assim, REST é mais adequado a cenários com requisitos moderados de segurança e elevado

foco na escalabilidade e simplicidade, como integração entre aplicações web ou comunicação

entre microserviços (Dragoni et al., 2017).

Em síntese, SOAP é mais indicado para contextos empresariais complexos, onde a

interoperabilidade, transações e segurança formal são cruciais. Já REST adapta-se melhor a

ambientes dinâmicos e leves, com ênfase na agilidade e compatibilidade generalizada. A escolha

entre ambos deve considerar as exigências de interoperabilidade entre sistemas heterogéneos,
os requisitos de segurança e o perfil de desempenho esperado.

Referências Bibliográficas 3.2:
Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts, Architectures

and Applications. Springer.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and

Design (5th ed.). Addison-Wesley.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.
(2017). Microservices: Yesterday, Today, and Tomorrow. In M. Mazzara & B. Meyer (Eds.),

Present and Ulterior Software Engineering (pp. 195–216). Springer.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly Media.

Questão 4.1:
Em sistemas com caches distribuídas (como Redis ou Memcached), quais as estratégias mais

eficazes para manter a coerência dos dados entre nós? Compare técnicas baseadas em
invalidação, atualização e timeout.

Página 5 de 8

Resposta 4.1:
Em sistemas distribuídos de larga escala, a utilização de caches distribuídas, como Redis ou

Memcached, é essencial para reduzir a latência de acesso a dados e diminuir a carga sobre

bases de dados centrais. No entanto, essa otimização levanta um desafio crítico, nomeadamente

como garantir a coerência dos dados armazenados em múltiplos nós de cache, muitas vezes

geograficamente distribuídos, sem comprometer a escalabilidade ou a disponibilidade do sistema
(Coulouris et al., 2011).

As três estratégias principais mais adotadas para lidar com esse problema são invalidação,

atualização (write-through ou write-behind) e timeout (expiração).

A invalidação consiste em remover ou marcar como desatualizada uma entrada da cache quando

ocorre uma alteração na origem dos dados. Esta técnica é eficaz quando se pretende evitar

leituras inconsistentes, sobretudo em sistemas que exigem consistência forte, como plataformas

de pagamentos ou reservas. Um exemplo prático é o sistema de reservas da CP Comboios de

Portugal, onde alterações na disponibilidade de lugares têm de ser refletidas de imediato. A
utilização de invalidação ativa garante que os utilizadores não acedem a dados obsoletos,

prevenindo reservas duplicadas ou rejeitadas. Contudo, garantir invalidação em tempo real exige

mecanismos eficientes de notificação e coordenação entre nós, como message buses ou

pub/sub distribuído, o que pode ser complexo e custoso (Tanenbaum & van Steen, 2007).

A estratégia de atualização, por sua vez, visa propagar a nova informação diretamente para a

cache assim que ocorre a alteração na origem. Existem duas variantes, no modelo write-through,

a escrita ocorre simultaneamente na base de dados e na cache, garantindo sincronismo imediato.
No modelo write-behind, a cache regista a alteração e adia a escrita na base de dados, o que

melhora a performance mas pode introduzir atrasos na persistência. Esta abordagem é comum

em sistemas de gestão de sessões como o do GitHub, onde manter os dados atualizados

melhora a experiência do utilizador sem comprometer demasiado o desempenho. A

desvantagem está na complexidade adicional para garantir integridade entre fontes,

especialmente em situações de falha parcial.

A estratégia de timeout atribui um tempo de vida (TTL – time to live) a cada entrada na cache.

Findo esse tempo, o valor é automaticamente removido ou considerado inválido, obrigando a
consulta à fonte original. Esta técnica reduz significativamente a complexidade de sincronização,

sendo amplamente usada em sistemas que toleram consistência eventual, como catálogos de

produtos da Amazon, onde um pequeno atraso na atualização de preços não compromete a

operação. No entanto, pode conduzir à entrega temporária de dados obsoletos, o que é

inaceitável em contextos críticos.

Na prática, muitos sistemas adotam abordagens híbridas, combinando timeout com invalidação

ativa em eventos críticos. Por exemplo, o Facebook utiliza caches com TTL para dados não
sensíveis, mas aplica invalidação direta via eventos internos para mudanças em perfis e

permissões. O Redis, por sua vez, permite configurar diferentes políticas de expiração e integra-

se com mecanismos de keyspace notifications que permitem avisar aplicações externas quando

chaves são modificadas, facilitando a coerência ativa.

Página 6 de 8

A escolha da estratégia ideal depende de múltiplos fatores, incluindo o padrão de leitura/escrita,

a criticidade dos dados, o grau de tolerância a incoerências e os requisitos de desempenho. Em

sistemas financeiros, onde a integridade é prioritária, invalidação imediata e atualização síncrona

são comuns. Já em aplicações de redes sociais ou conteúdos noticiosos, onde o volume de

leitura é massivo e a consistência pode ser relaxada, o timeout oferece um bom equilíbrio entre

simplicidade e eficácia (Alonso et al., 2004).
Em suma, manter a coerência em caches distribuídas é uma tarefa delicada que envolve

compromissos entre consistência, desempenho e escalabilidade. As estratégias de invalidação,

atualização e timeout oferecem diferentes equilíbrios, e a combinação entre elas, de forma

contextualizada, permite construir sistemas robustos, eficientes e adequados ao domínio em que

operam.

Referências Bibliográficas 4.1:
Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts, Architectures
and Applications. Springer.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and

Design (5th ed.). Addison-Wesley.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly Media.

Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems: Principles and Paradigms

(2nd ed.). Pearson Education.

Questão 4.2:
Compare as abordagens baseadas em quorum (como o protocolo de leitura/escrita majoritária)

com replicação primária em termos de consistência, disponibilidade e tolerância a falhas em

sistemas distribuídos. Em que cenários cada abordagem é mais adequada?

Resposta 4.2:
A replicação de dados é uma técnica fundamental para garantir a continuidade e fiabilidade dos

sistemas distribuídos. Ao manter múltiplas cópias da mesma informação em diferentes nós da
rede, melhora-se a disponibilidade dos dados e a tolerância a falhas, reduzindo os riscos

associados a pontos únicos de falha. As duas estratégias de replicação mais adotadas são a

replicação primária e os modelos baseados em quorum. Cada uma apresenta características

distintas em termos de consistência, disponibilidade e tolerância a falhas, refletindo os

compromissos estabelecidos pelo teorema CAP (Coulouris et al., 2011).

Na replicação primária (também conhecida como mestre-escravo), existe um único nó designado

como primário que é responsável por todas as operações de escrita. Os nós secundários
(réplicas) podem ser usados para operações de leitura, consoante o grau de consistência

requerido. Esta abordagem é particularmente adequada a cenários onde a integridade

transacional é crítica e as atualizações devem seguir uma ordem bem definida. Por exemplo, em

sistemas de gestão académica, plataformas financeiras ou serviços administrativos, é comum

Página 7 de 8

utilizar MySQL configurado com replicação primária e soluções de alta disponibilidade como

MHA (Master High Availability) ou Group Replication, permitindo que os dados estejam sempre

atualizados e ordenados num ponto de controlo central.

Entre as principais vantagens desta abordagem estão a simplicidade na resolução de conflitos e

a previsibilidade do comportamento do sistema. Contudo, a existência de um ponto central de

escrita introduz riscos significativos de disponibilidade, caso o nó primário falhe. Embora
mecanismos de failover automático possam atenuar este risco, a comutação entre nós requer

coordenação precisa e pode introduzir janelas de indisponibilidade, especialmente em sistemas

com elevada taxa de escrita.

Por outro lado, os sistemas baseados em quorum distribuem as responsabilidades de leitura e

escrita entre múltiplas réplicas, impondo um número mínimo de confirmações (quorum) para

validar cada operação. A condição R + W > N (onde R é o número de réplicas consultadas para

leitura, W o número para escrita e N o total de réplicas) assegura que pelo menos uma réplica

envolvida numa leitura possui a informação mais atualizada (Tanenbaum & van Steen, 2007).
Este modelo melhora substancialmente a disponibilidade, pois permite a continuidade de

operação mesmo quando algumas réplicas estão inacessíveis ou com falhas.

Este tipo de abordagem é amplamente adotado em sistemas de armazenamento distribuído,

como Ceph ou GlusterFS, muito utilizados em ambientes académicos, plataformas de

computação científica e clouds privadas. Nestes contextos, a resiliência a falhas e a

escalabilidade horizontal são prioridades, e a consistência pode ser ajustada dinamicamente

consoante a criticidade dos dados. A capacidade de operar com partições temporárias da rede
e de recuperar automaticamente réplicas desatualizadas faz destes sistemas uma escolha sólida

em infraestruturas que exigem elevada robustez.

Apesar das vantagens, os modelos baseados em quorum não são isentos de complexidade. Em

redes com elevada latência ou relógios dessincronizados, podem ocorrer leituras inconsistentes

ou atrasos na propagação de escritas. Para mitigar estas situações, são frequentemente

aplicadas estratégias de resolução de conflitos, como vetores de versão, algoritmos de

reconciliação ou políticas de “última escrita válida”. Estas técnicas, embora eficazes, introduzem

sobrecarga computacional e requerem lógica adicional na aplicação.
A escolha entre replicação primária e quorum deve, portanto, ser cuidadosamente ponderada

em função das necessidades do sistema. A replicação primária é mais indicada em contextos

que exigem consistência forte e auditoria rigorosa, como aplicações financeiras ou gestão

hospitalar. Já os modelos baseados em quorum são preferíveis quando se pretende maximizar

a disponibilidade e a escalabilidade, como em sistemas de armazenamento partilhado,

plataformas de serviços web ou ambientes de microserviços.

Em suma, ambas as estratégias oferecem vantagens relevantes no desenho de sistemas
distribuídos. Compreender os compromissos inerentes a cada abordagem permite aos arquitetos

de sistemas escolher a solução mais adequada aos objetivos operacionais, minimizando riscos

e otimizando a performance global do sistema.

Página 8 de 8

Referências Bibliográficas 4.2:
Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and

Design (5th ed.). Addison-Wesley.

Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems: Principles and Paradigms

(2nd ed.). Pearson Education.

