b b

‘ E'félio B I Folha de resolugé@o para E-folio

N ABERTA

UNIDADE CURRICULAR: Sistemas Distribuidos
CcODIGO: 21108

DOCENTE: Nelson Russo

A preencher pelo estudante

NOME: Luis Carlos Crispim Pereira

N.° DE ESTUDANTE: 2300163

CURSQO: Licenciatura Engenharia de Informatica

DATA DE ENTREGA: 20/05/25

Pagina1de 8



TRABALHO / RESOLUGAO:

Questéo 3.1:
Avalie o impacto da utilizagdo de middleware orientado a mensagens (como o Apache Kafka ou
RabbitMQ) na construgdo de Sistemas Distribuidos escalaveis e resilientes. Que desafios

surgem na garantia da ordem e entrega das mensagens?

Resposta 3.1:

A adogdo de middleware orientado a mensagens (MOM) tornou-se um elemento central na
construgédo de Sistemas Distribuidos modernos. Plataformas como Apache Kafka e RabbitMQ
fornecem mecanismos de comunicagdo assincrona e desacoplada entre componentes. Esta
abordagem promove a escalabilidade horizontal e a resiliéncia a falhas, caracteristicas
fundamentais em arquiteturas de larga escala (Coulouris et al., 2011).

Estes sistemas baseiam-se no modelo publish-subscribe ou em filas de mensagens, em que
produtores enviam dados para tépicos ou filas e os consumidores processam-nos de forma
independente. Esta separacéo temporal e légica entre produtores e consumidores permite que
os sistemas evoluam e escalem autonomamente. Além disso, reduz o acoplamento entre
componentes e facilita a tolerancia a falhas (Hohpe & Woolf, 2003).

O Apache Kafka, por exemplo, € amplamente utilizado em plataformas como LinkedIn e Netflix
devido a sua elevada taxa de throughput e ao armazenamento persistente de logs distribuidos.
Este middleware assegura durabilidade, replicagao entre brokers e tolerancia a falhas de nés
individuais. Por sua vez, o RabbitMQ é mais orientado a aplicagdes empresariais e destaca-se
pela flexibilidade no encaminhamento de mensagens e pelo suporte a multiplos protocolos, como
AMQP e MQTT. Este ultimo é ideal em sistemas que exigem compatibilidade heterogénea
(Coulouris et al., 2011).

Apesar das vantagens, surgem desafios importantes ao nivel da entrega e da ordenacéo das
mensagens. Um dos principais problemas é a garantia da ordem. No Kafka, a ordem so é
garantida dentro de uma particdo especifica. Se forem utilizadas multiplas particdes para
paralelismo, a ordem global perde-se. Este comportamento exige uma arquitetura consciente do
particionamento e, em muitos casos, légica adicional na aplicagdo para reconstruir sequéncias
(Boykin & Ritchie, 2020).

Outro desafio é a entrega garantida, frequentemente classificada em trés niveis: at-most-once,
at-least-once e exactly-once. Por padrdo, o Kafka opera com semantica at-least-once, o que
pode originar duplicacdo. Ja o suporte a exactly-once implica compromissos em termos de
desempenho, exigindo coordenagdo entre produtor, broker e consumidor (Kreps, 2014). O
RabbitMQ, com mecanismos de confirmagdo e filas persistentes, tenta mitigar perdas, mas
continua vulneravel em falhas abruptas.

A resiliéncia global depende também da replicagao e do failover automatico. Empresas como
Uber e Spotify operam clusters Kafka com multiplos brokers e coordenagéo via Zookeeper.
Contudo, estas infraestruturas requerem configuragdo cuidada e monitorizagdo constante, com

recurso a ferramentas como Prometheus e Grafana.

Pagina 2 de 8



Em sintese, middleware como Kafka e RabbitMQ sdo pilares fundamentais para sistemas
escalaveis e tolerantes a falhas. No entanto, introduzem complexidades na ordenacéo,
duplicagéo e entrega fiavel de mensagens. O sucesso da sua utilizagdo depende de decisbes
arquiteténicas conscientes sobre particdes, seméntica de entrega e mecanismos de

recuperacao.

Referéncias Bibliograficas 3.1:

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and
Design (5th ed.). Addison-Wesley.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley.

Boykin, P., & Ritchie, J. (2020). Kafka: The Definitive Guide (2nd ed.). O’Reilly Media.

Kreps, J. (2014). | Heart Logs: Event Data, Stream Processing, and Data Integration. O’Reilly
Media.

Questdo 3.2:
Considere a integragdo de servigos heterogéneos utilizando middleware baseado em Web
Services. Explique como os padrées SOAP e REST abordam a interoperabilidade e seguranga

entre diferentes dominios organizacionais.

Resposta 3.2:

A integracao de servigos heterogéneos em ambientes distribuidos € um desafio fundamental nos
sistemas modernos. Neste contexto, o middleware baseado em Web Services desempenha um
papel central, permitindo que componentes desenvolvidos em diferentes plataformas, linguagens
ou localizagdes possam comunicar de forma padronizada. Os dois principais paradigmas
utilizados sao SOAP (Simple Object Access Protocol) e REST (Representational State Transfer),
ambos com abordagens distintas a interoperabilidade e a seguranga (Coulouris et al., 2011).

O padrao SOAP é uma especificagdo formal baseada em XML, com suporte a contratos de
interface através de WSDL (Web Services Description Language). Esta abordagem é
particularmente robusta em ambientes empresariais complexos, onde sao necessarios elevados
niveis de interoperabilidade, definigéo rigorosa de servigos e suporte a transagdes distribuidas.
A sua formalizagdo facilita a comunicacdo entre organizagdes que utilizam tecnologias muito
distintas, como Java EE e .NET, assegurando uma descri¢gdo exata das operagdes e dos tipos
de dados. SOAP ¢ frequentemente usado em contextos financeiros, servigos governamentais e
sistemas criticos, onde a padronizagdo e o controlo rigoroso das mensagens séo prioritarios
(Alonso et al., 2004).

A nivel de seguranga, SOAP é compativel com WS-Security, um conjunto de normas que
suportam autenticagao, assinatura digital, criptografia de mensagens e controle de politicas de
acesso. Estas capacidades tornam SOAP adequado para cenarios que exigem

confidencialidade, integridade e n&o repudio. Um exemplo comum € a integragdo de servigos

Pagina 3 de 8



bancarios ou hospitalares que necessitam de logs auditaveis e protegdo em profundidade. No
entanto, esta seguranga tem um custo, uma vez que o processamento XML e a sobrecarga das
mensagens SOAP podem impactar negativamente a performance (Coulouris et al., 2011).

Em contraste, o modelo REST n&o se baseia em XML nem exige contratos formais. E um estilo
arquitetural que utiliza os métodos padrao do protocolo HTTP (GET, POST, PUT, DELETE) para
operar sobre recursos identificados por URIs. A simplicidade do REST favorece a escalabilidade
e o desempenho, sendo amplamente utilizado em APIs publicas e aplicagcbes médveis. A sua
interoperabilidade baseia-se em padrées amplamente aceites como JSON e HTTP, o que facilita
a adogdo rapida em contextos com menor necessidade de formalizagdo. Por exemplo,
plataformas como Twitter, GitHub e Google Maps oferecem APIs RESTful para acesso a
funcionalidades externas (Newman, 2015).

Em termos de seguranga, REST recorre maioritariamente a mecanismos do proprio HTTP, como
TLS/SSL, autenticagéo basica ou tokens OAuth. Embora estas solugbes sejam adequadas para
muitas aplicagdes, oferecem menor granularidade de controlo em comparagao com WS-Security.
Assim, REST é mais adequado a cenarios com requisitos moderados de seguranga e elevado
foco na escalabilidade e simplicidade, como integragéo entre aplicagdes web ou comunicagao
entre microservigos (Dragoni et al., 2017).

Em sintese, SOAP é mais indicado para contextos empresariais complexos, onde a
interoperabilidade, transagdes e seguranga formal sdo cruciais. Ja REST adapta-se melhor a
ambientes dindmicos e leves, com énfase na agilidade e compatibilidade generalizada. A escolha
entre ambos deve considerar as exigéncias de interoperabilidade entre sistemas heterogéneos,
os requisitos de segurancga e o perfil de desempenho esperado.

Referéncias Bibliograficas 3.2:

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts, Architectures
and Applications. Springer.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and
Design (5th ed.). Addison-Wesley.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L.
(2017). Microservices: Yesterday, Today, and Tomorrow. In M. Mazzara & B. Meyer (Eds.),
Present and Ulterior Software Engineering (pp. 195-216). Springer.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly Media.

Questéo 4.1:

Em sistemas com caches distribuidas (como Redis ou Memcached), quais as estratégias mais
eficazes para manter a coeréncia dos dados entre nés? Compare técnicas baseadas em
invalidacdo, atualizagao e timeout.

Pagina 4 de 8



Resposta 4.1:

Em sistemas distribuidos de larga escala, a utilizacdo de caches distribuidas, como Redis ou
Memcached, é essencial para reduzir a laténcia de acesso a dados e diminuir a carga sobre
bases de dados centrais. No entanto, essa otimizagao levanta um desafio critico, nomeadamente
como garantir a coeréncia dos dados armazenados em multiplos nds de cache, muitas vezes
geograficamente distribuidos, sem comprometer a escalabilidade ou a disponibilidade do sistema
(Coulouris et al., 2011).

As trés estratégias principais mais adotadas para lidar com esse problema séo invalidacao,
atualizagao (write-through ou write-behind) e timeout (expiragao).

Ainvalidag&o consiste em remover ou marcar como desatualizada uma entrada da cache quando
ocorre uma alteragdo na origem dos dados. Esta técnica é eficaz quando se pretende evitar
leituras inconsistentes, sobretudo em sistemas que exigem consisténcia forte, como plataformas
de pagamentos ou reservas. Um exemplo pratico é o sistema de reservas da CP Comboios de
Portugal, onde alteragdes na disponibilidade de lugares tém de ser refletidas de imediato. A
utilizacdo de invalidacdo ativa garante que os utilizadores ndo acedem a dados obsoletos,
prevenindo reservas duplicadas ou rejeitadas. Contudo, garantir invalidagdo em tempo real exige
mecanismos eficientes de notificagdo e coordenagédo entre ndés, como message buses ou
pub/sub distribuido, o que pode ser complexo e custoso (Tanenbaum & van Steen, 2007).

A estratégia de atualizagdo, por sua vez, visa propagar a nova informagéo diretamente para a
cache assim que ocorre a alteragdo na origem. Existem duas variantes, no modelo write-through,
a escrita ocorre simultaneamente na base de dados e na cache, garantindo sincronismo imediato.
No modelo write-behind, a cache regista a alteragdo e adia a escrita na base de dados, o que
melhora a performance mas pode introduzir atrasos na persisténcia. Esta abordagem é comum
em sistemas de gestdo de sessdes como o do GitHub, onde manter os dados atualizados
melhora a experiéncia do utilizador sem comprometer demasiado o desempenho. A
desvantagem esta na complexidade adicional para garantir integridade entre fontes,
especialmente em situacdes de falha parcial.

A estratégia de fimeout atribui um tempo de vida (TTL — time to live) a cada entrada na cache.
Findo esse tempo, o valor é automaticamente removido ou considerado invélido, obrigando a
consulta a fonte original. Esta técnica reduz significativamente a complexidade de sincronizagéo,
sendo amplamente usada em sistemas que toleram consisténcia eventual, como catalogos de
produtos da Amazon, onde um pequeno atraso na atualizagado de pregcos ndo compromete a
operacdo. No entanto, pode conduzir a entrega temporaria de dados obsoletos, o que é
inaceitavel em contextos criticos.

Na pratica, muitos sistemas adotam abordagens hibridas, combinando timeout com invalidagéo
ativa em eventos criticos. Por exemplo, o Facebook utiliza caches com TTL para dados n&o
sensiveis, mas aplica invalidagdo direta via eventos internos para mudangas em perfis e
permissdes. O Redis, por sua vez, permite configurar diferentes politicas de expiragéo e integra-
se com mecanismos de keyspace notifications que permitem avisar aplicagdes externas quando

chaves sao modificadas, facilitando a coeréncia ativa.

Pagina 5 de 8



A escolha da estratégia ideal depende de multiplos fatores, incluindo o padrao de leitura/escrita,
a criticidade dos dados, o grau de tolerancia a incoeréncias e os requisitos de desempenho. Em
sistemas financeiros, onde a integridade é prioritaria, invalidagao imediata e atualizagao sincrona
sdo comuns. Ja em aplicagdes de redes sociais ou conteludos noticiosos, onde o volume de
leitura € massivo e a consisténcia pode ser relaxada, o timeout oferece um bom equilibrio entre
simplicidade e eficacia (Alonso et al., 2004).

Em suma, manter a coeréncia em caches distribuidas é uma tarefa delicada que envolve
compromissos entre consisténcia, desempenho e escalabilidade. As estratégias de invalidacao,
atualizacao e timeout oferecem diferentes equilibrios, e a combinacdo entre elas, de forma
contextualizada, permite construir sistemas robustos, eficientes e adequados ao dominio em que

operam.

Referéncias Bibliograficas 4.1:

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts, Architectures
and Applications. Springer.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and
Design (5th ed.). Addison-Wesley.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly Media.
Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems: Principles and Paradigms

(2nd ed.). Pearson Education.

Questdo 4.2:
Compare as abordagens baseadas em quorum (como o protocolo de leitura/escrita majoritaria)
com replicagdo primaria em termos de consisténcia, disponibilidade e tolerancia a falhas em

sistemas distribuidos. Em que cenarios cada abordagem é mais adequada?

Resposta 4.2:

A replicagédo de dados é uma técnica fundamental para garantir a continuidade e fiabilidade dos
sistemas distribuidos. Ao manter multiplas cépias da mesma informagédo em diferentes nés da
rede, melhora-se a disponibilidade dos dados e a tolerancia a falhas, reduzindo os riscos
associados a pontos Unicos de falha. As duas estratégias de replicagdo mais adotadas séo a
replicacdo primaria e os modelos baseados em quorum. Cada uma apresenta caracteristicas
distintas em termos de consisténcia, disponibilidade e tolerancia a falhas, refletindo os
compromissos estabelecidos pelo teorema CAP (Coulouris et al., 2011).

Na replicagao primaria (fambém conhecida como mestre-escravo), existe um unico né designado
como primario que é responsavel por todas as operagdes de escrita. Os nds secundarios
(réplicas) podem ser usados para operagdes de leitura, consoante o grau de consisténcia
requerido. Esta abordagem €& particularmente adequada a cenérios onde a integridade
transacional é critica e as atualizagdes devem seguir uma ordem bem definida. Por exemplo, em

sistemas de gestdo académica, plataformas financeiras ou servigos administrativos, € comum

Pagina 6 de 8



utilizar MySQL configurado com replicagéo primaria e solugbes de alta disponibilidade como
MHA (Master High Availability) ou Group Replication, permitindo que os dados estejam sempre
atualizados e ordenados num ponto de controlo central.

Entre as principais vantagens desta abordagem estéo a simplicidade na resolugéo de conflitos e
a previsibilidade do comportamento do sistema. Contudo, a existéncia de um ponto central de
escrita introduz riscos significativos de disponibilidade, caso o né primario falhe. Embora
mecanismos de failover automatico possam atenuar este risco, a comutagdo entre nés requer
coordenacao precisa e pode introduzir janelas de indisponibilidade, especialmente em sistemas
com elevada taxa de escrita.

Por outro lado, os sistemas baseados em quorum distribuem as responsabilidades de leitura e
escrita entre multiplas réplicas, impondo um numero minimo de confirmagbes (quorum) para
validar cada operagéo. A condicdo R + W > N (onde R é o nimero de réplicas consultadas para
leitura, W o numero para escrita e N o total de réplicas) assegura que pelo menos uma réplica
envolvida numa leitura possui a informagao mais atualizada (Tanenbaum & van Steen, 2007).
Este modelo melhora substancialmente a disponibilidade, pois permite a continuidade de
operagao mesmo quando algumas réplicas estéo inacessiveis ou com falhas.

Este tipo de abordagem é amplamente adotado em sistemas de armazenamento distribuido,
como Ceph ou GlusterFS, muito utilizados em ambientes académicos, plataformas de
computagdo cientifica e clouds privadas. Nestes contextos, a resiliéncia a falhas e a
escalabilidade horizontal séo prioridades, e a consisténcia pode ser ajustada dinamicamente
consoante a criticidade dos dados. A capacidade de operar com particbes temporarias da rede
e de recuperar automaticamente réplicas desatualizadas faz destes sistemas uma escolha soélida
em infraestruturas que exigem elevada robustez.

Apesar das vantagens, os modelos baseados em quorum néo séo isentos de complexidade. Em
redes com elevada laténcia ou reldgios dessincronizados, podem ocorrer leituras inconsistentes
ou atrasos na propagagao de escritas. Para mitigar estas situagdes, sdo frequentemente
aplicadas estratégias de resolugdo de conflitos, como vetores de versio, algoritmos de
reconciliacdo ou politicas de “Ultima escrita valida”. Estas técnicas, embora eficazes, introduzem
sobrecarga computacional e requerem légica adicional na aplica¢ao.

A escolha entre replicagao primaria e quorum deve, portanto, ser cuidadosamente ponderada
em fungido das necessidades do sistema. A replicagdo primaria € mais indicada em contextos
que exigem consisténcia forte e auditoria rigorosa, como aplicagdes financeiras ou gestéo
hospitalar. Ja os modelos baseados em quorum sao preferiveis quando se pretende maximizar
a disponibilidade e a escalabilidade, como em sistemas de armazenamento partilhado,
plataformas de servigos web ou ambientes de microservigos.

Em suma, ambas as estratégias oferecem vantagens relevantes no desenho de sistemas
distribuidos. Compreender os compromissos inerentes a cada abordagem permite aos arquitetos
de sistemas escolher a solugdo mais adequada aos objetivos operacionais, minimizando riscos

e otimizando a performance global do sistema.

Pagina 7 de 8



Referéncias Bibliograficas 4.2:

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed Systems: Concepts and
Design (5th ed.). Addison-Wesley.

Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems: Principles and Paradigms

(2nd ed.). Pearson Education.

Pagina 8 de 8



