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TRABALHO / RESOLUÇÃO: 

1. Enunciado: 

[𝐴	|	𝐼!] = (
−2 1 3
1 0 1
3 1 9

	/	
1 0 0
0 1 0
0 0 1

0
")

	
$!⟷$"
1⎯⎯3	(

1 0 1
−2 1 3
3 1 9

	/	
0 1 0
1 0 0
0 0 1

0
&)

	$!'($"
$#$#%"

1⎯⎯⎯3 (
1 0 1
0 1 5
0 1 6

	/	
0 1 0
1 2 0
0 −3 1

0
))

$#*$!
1⎯⎯3 (

1 0 1
0 1 5
0 0 1

	/	
0 1 0
1 2 0
−1 −1 1

0
+)

	 $"*$#
$!*,$#

1⎯⎯⎯3 	(
1 0 0
0 1 0
0 0 1

	/	
1 2 −1
6 7 −5
−1 −1 1

0
-)

 

1.1. No exercício está a utilizar-se a matriz aumentada [𝐴	|	𝐼!] e a aplicar operações 

elementares de linha segundo o método de Gauss-Jordan, com o objetivo de obter 

uma matriz da forma [𝐼!	|	𝐴*.]. 

Desta forma, o que se pretende determinar é a matriz inversa de 𝐴, isto é, 𝐴*.. 

1.2. A partir da etapa 𝑑 a resolução esta incorreta. Na passagem de 𝑐 para 𝑑 é 

aplicada a operação 𝑙! − 𝑙(, na parte esquerda da matriz a operação é feita 

corretamente, mas na parte direita houve um erro de calculo [0, −3, 1] − [1, 2, 0] =

[−1,−5, 1] e não [−1,−1, 1], assim a etapa 𝑑 está errada, e todas as etapas 

subsequentes ficam afetadas por este erro. 

1.3. 

[𝐴	|	𝐼!] = (
−2 1 3
1 0 1
3 1 9

	/	
1 0 0
0 1 0
0 0 1

0
")

	
$!⟷$"
1⎯⎯3	(

1 0 1
−2 1 3
3 1 9

	/	
0 1 0
1 0 0
0 0 1

0
&)

	$!'($"
$#$#%"

1⎯⎯⎯3 (
1 0 1
0 1 5
0 1 6

	/	
0 1 0
1 2 0
0 −3 1

0
))

$#*$!
1⎯⎯3 (

1 0 1
0 1 5
0 0 1

	/	
0 1 0
1 2 0
−1 −5 1

0
+)

	 $"*$#
$!*,$#

1⎯⎯⎯3 	(
1 0 0
0 1 0
0 0 1

	/	
1 6 −1
6 27 −5
−1 −5 1

0
-)

 

Logo,  

[𝐴*.	] = (
1 6 −1
6 27 −5
−1 −5 1

	0 
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2. Enunciado: 

<
−𝑥 + 𝑦 − 𝑧 = −3
𝛼𝑥 + 𝛼𝑦 = 𝛽
𝛼𝑦 − 𝑧 = −4

→	 (
−1 1 −1
𝛼 𝛼 0
0 𝛼 −1

	/	
−3
𝛽
−4
0	
$!'/$"
1⎯⎯⎯3 	(

−1 1 −1
0 2𝛼 −𝛼
0 𝛼 −1

	/	
−3

𝛽 − 3𝛼
−4

0

$!⟷$#
1⎯⎯3	 (

−1 1 −1
0 𝛼 −1
0 2𝛼 −𝛼

	/	
−3
−4

𝛽 − 3𝛼
0
$#*($!
1⎯⎯⎯3 (

−1 1 −1
0 𝛼 −1
0 0 2 − 𝛼

	/	
−3
−4

𝛽 − 3𝛼 + 8
0 	

/0(
1⎯3 (

−1 1 −1
0 2 −1
0 0 0

	/	
−3
−4
𝛽 + 2

0	 12*(
1⎯⎯3 	𝐼𝑚𝑝𝑜𝑠𝑠í𝑣𝑒𝑙																									

10*(
1⎯⎯3𝑃𝑜𝑠𝑠𝑖𝑣𝑒𝑙	𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑜 

2.1. Para todos os valores de 𝛼, 𝛽	 ∈ 	ℝ, estude a existência e o número de soluções 

do sistema <
−𝑥 + 𝑦 − 𝑧 = −3
𝛼𝑥 + 𝛼𝑦 = 𝛽
𝛼𝑦 − 𝑧 = −4

	determinando, em função de 𝛼 e 	𝛽, os casos em que o 

sistema é impossível, possível e determinado ou possível e indeterminado, 

resolvendo-o sempre que possível. 

 

2.2. 

Como os pivôs da matriz reduzida são os coeficientes 𝛼 (na 2.ª linha) e 2 − 𝛼 (na 

3.ª linha), apenas os valores que anulam estes pivôs, ou seja, 𝛼 = 0 e 𝛼 = 2, 

alteram a estrutura do sistema. 

Partindo da matriz reduzida geral obtida (
−1 1 −1
0 𝛼 −1
0 0 2 − 𝛼

	/	
−3
−4

𝛽 − 3𝛼 + 8
0, irei analisar 

separadamente os casos de 𝛼 = 2, 𝛼 = 0 e 𝛼 ≠ 0 ∧ 𝛼 ≠ 2. 

 

/0(
1⎯3 (

−1 1 −1
0 2 −1
0 0 0

	/	
−3
−4
𝛽 + 2

0	12*(
1⎯⎯3 	𝐼𝑚𝑝𝑜𝑠𝑠í𝑣𝑒𝑙																									

10*(
1⎯⎯3𝑃𝑜𝑠𝑠í𝑣𝑒𝑙	𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑜 

 

/03
1⎯3 (

−1 1 −1
0 0 −1
0 0 2

	/	
−3
−4
𝛽 + 8

0	123
1⎯3 	𝐼𝑚𝑝𝑜𝑠𝑠í𝑣𝑒𝑙																									

103
1⎯3𝑃𝑜𝑠𝑠í𝑣𝑒𝑙	𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑜 

 

O sistema é regular (os pivôs não anulam), pelo que há sempre uma única solução, 

para qualquer 𝛽	 ∈ 	ℝ. 

/23	∧	/2(
1⎯⎯⎯⎯⎯⎯3W

𝑧 = (𝛽 − 3𝛼 + 8) (2 − 𝛼)⁄
𝑦 = (𝑧 − 4) 𝛼⁄
𝑥 = 3 + 𝑦 − 𝑧

			𝑃𝑜𝑠𝑠í𝑣𝑒𝑙	𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑜	(𝑠𝑜𝑙𝑢çã𝑜	ú𝑛𝑖𝑐𝑎) 
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Nos casos 𝛼 = 2 e 𝛼 = 0, a matriz reduzida sofre alterações significativas, pelo que 

apresento as matrizes correspondentes. Já para  𝛼 ≠ 0	 ∧ 𝛼 ≠ 2, a matriz mantém a 

sua forma regular e o sistema é sempre possível e determinado (solução única), 

não havendo necessidade de apresentar nova matriz. 

 

3. Enunciado: 

`
5 6 0 0
1 5 6 0
0
0

1
0

5 6
1 5

` = 5(−1).'. 	 /
5 6 0
1 5 6
0 1 5

/ + 6(−1).'( /
1 6 0
0 5 6
0 1 5

/ + 0(−1).'!	|⋯ | + 0(−1).'6	|⋯ | = 

 

3.1. 

Está a ser calculado o determinante da matriz quadrada de ordem 4 utilizando o 

desenvolvimento de Laplace pela primeira linha.  

Cuja fórmula geral é: 

det(𝐴) =e𝑎.7(−1).'7
6

70.

det	(𝑀.8) 

3.2. 

Matriz inicial: 

𝐴 = `
5 6 0 0
1 5 6 0
0
0

1
0

5 6
1 5

` 

 

Desenvolvimento pela primeira linha (5, 6, 0, 0): 

det(𝐴) =e𝑎.7(−1).'7
6

70.

detg𝑀.8h = 5(−1).'. det(𝑀..) + 6(−1).'( det(𝑀.() + 0 + 0 

Calculando sinais: 

(−1).'. = (−1)( = 1 (−1).'( = (−1)! = −1 

 

Logo: 

det(𝐴) = 5det(𝑀..) − 6det(𝑀.() 

 

Os menores são: 

𝑀.. = /
5 6 0
1 5 6
0 1 5

/ 𝑀.( = /
1 6 0
0 5 6
0 1 5

/ 
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Cálculo de det(𝑀..), desenvolvimento pela primeira linha (5, 6, 0): 

det(𝑀..) =e(𝑀..).7(−1).'7
!

70.

detg𝑁.7h = 5(−1).'. det(𝑁..) + 6(−1).'( det(𝑁.() + 0 

Calculando sinais: 

(−1).'. = (−1)( = 1 (−1).'( = (−1)! = −1 

 

Logo: 

det(𝑀..) = 5det(𝑁..) − 6det(𝑁.() 

 

Os menores são: 

𝑁.. = j5 6
1 5j = 5	. 5 − 6	. 1 = 25 − 6 = 19  𝑁.( = j1 6

0 5j = 1	. 5 − 6	. 0 = 5 

 

Então: 

det(𝑀..) = 5det(𝑁..) − 6det(𝑁.() = 5	.		19 − 6	.		5 = 95 − 30 = 65 

 

Cálculo de det(𝑀.(), desenvolvimento pela primeira coluna (1, 0, 0): 

det(𝑀.() =e(𝑀.()9.(−1)9'.
!

90.

det(𝑁9.) = 1(−1).'. det(𝑁..) + 0 + 0 

Calculando sinais: 

(−1).'. = (−1)( = 1 

 

Logo: 

det(𝑀.() = 1det(𝑁..) 

 

Os menores são: 

𝑁.. = j5 6
1 5j = 5	. 5 − 6	. 1 = 25 − 6 = 19  

 

Então: 

det(𝑀.() =1det(𝑁..) = 1	. 19 = 19 

 

Conclui-se, assim, que o determinante da matriz A é: 

det(𝐴) = 5det(𝑀..) − 6det(𝑀.() = 5	. 65 − 6	. 19 = 325 − 114 = 211 
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4. Enunciado: 

⎩
⎪
⎨

⎪
⎧
𝑥 + 2𝑦 + 3𝑧 = 4
2𝑥 + 3𝑦 + 2𝑧 = 4
3𝑥 + 2𝑦 + 𝑧 = 4

⟺ 𝑥 =
`

`

4 2 3
4 3 2
4 2 1
1 2 3
2 3 2
3 2 1

`

`
	 , 𝑦 = 

 

4.1. 

Resolva o seguinte sistema de equações lineares: 

 

<
𝑥 + 2𝑦 + 3𝑧 = 4
2𝑥 + 3𝑦 + 2𝑧 = 4
3𝑥 + 2𝑦 + 𝑧 = 4

,  

 

Utilizado a Regra de Cramer, calcule os valores de 𝑥, 𝑦, 𝑧 através dos determinantes 

das matrizes associadas. 

 

4.2. 

Pela Regra de Cramer, cada incógnita é dada pelo quociente entre o determinante 

da matriz obtida substituindo a coluna correspondente pelo vetor dos termos 

independentes e o determinante da matriz dos coeficientes. 

𝑥 =
det	(𝐴:)
det	(𝐴)  𝑦 =

det	(𝐴;)
det	(𝐴)  𝑧 =

det	(𝐴<)
det	(𝐴)  

 

𝐴 = /
1 2 3
2 3 2
3 2 1

/ 𝑏 = /
4
4
4
/ 

 

det(𝐴) = 1 j3 2
2 1j − 2 j

2 2
3 1j + 3 j

2 3
3 2	j = 1(3	. 1 − 2	. 2) − 2(2	.		1 − 2	.		3) + 3(2	. 2 − 3	. 3)

= 1(3 − 4) − 2(2 − 6) + 3(4 − 9) = −1 − 2(−4) + 3(−5) = −1 + 8 − 15 = −8 

Portanto det(𝐴) = −8	 ≠ 0, sistema possível e determinado (solução única). 

 

	𝐴: = /
4 2 3
4 3 2
4 2 1

/ 
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det	(𝐴:) = 4 j3 2
2 1j − 4 j

2 3
2 1j + 4 j

2 3
3 2j = 4(3	. 1 − 2	. 2) − 4(2	. 1 − 3	. 2) + 4(2	. 2 − 3	. 3)

= 4(3 − 4) − 4(2 − 6) + 4(4 − 9) = 4(−1) − 4(−4) + 4(−5) = −4 + 16 − 20 = −8 

 

𝐴; = /
1 4 3
2 4 2
3 4 1

/ 

 

detg𝐴;h = 4 j2 2
3 1j − 4 j

1 3
3 1j + 4 j

1 3
2 2j = 4(2	. 1 − 2	.		3) − 4(1	. 1 − 3	. 3) + 4(1	. 2 − 3	. 2)

= 4(2 − 6) − 4(1 − 9) + 4(2 − 6) = 4(−4) − 4(−8) + 4(−4) = −16 + 32 − 16 = 0 

 

𝐴< = /
1 2 4
2 3 4
3 2 4

/ 

 

det(𝐴<) = 4 j2 3
3 2j − 4 j

1 2
3 2j + 4 j

1 2
2 3j = 4(2	. 2 − 3	. 3) − 4	(1	. 2 − 2	. 3) + 4(1	. 3 − 2	. 2)

= 4(4 − 9) − 4(2 − 6) + 4(3 − 4) = 4(−5) − 4(−4) + 4(−1) = −20 + 16 − 4 = −8 

 

Então: 

𝑥 =
`

`

4 2 3
4 3 2
4 2 1
1 2 3
2 3 2
3 2 1

`

`
=
det	(𝐴:)
det	(𝐴)

=
−8
−8 = 1 

𝑦 =
`

`

1 4 3
2 4 2
3 4 1
1 2 3
2 3 2
3 2 1

`

`
=
det	(𝐴;)
det	(𝐴)

=
0
−8 = 0 

𝑧 =
`

`

1 2 4
2 3 4
3 2 4
1 2 3
2 3 2
3 2 1

`

`
=
det	(𝐴<)
det	(𝐴)

=
−8
−8 = 1 

 

Como det(𝐴) = −8	 ≠ 0, o sistema é possível e determinado e conforme demonstrado 

através da Regra de Cramer, obtém-se: 

 

𝑥 =
det	(𝐴:)
det	(𝐴) = 1 𝑦 =

det	(𝐴;)
det	(𝐴) = 0 𝑧 =

det	(𝐴<)
det	(𝐴) = 1 

 

Logo, a solução do sistema é (𝑥, 𝑦, 𝑧) 	= (1,0,1). 
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5. Enunciado: 

𝑆𝑒𝑗𝑎	𝑈 = ⟨(1,2,3), (2,3,4), (3,2,1)⟩	, 𝑉 = {(𝑥, 𝑦, 𝑧) ∈ 	ℝ!: 2𝑥 + 3𝑦 + 9𝑧 = 0}, 𝑒	𝑏 = (1,3,6) 

 

5.1. 

Irei chamar de: 

𝑢. = (1,2,3) 𝑢( = (2,3,4) 𝑢! = (3,2,1) 

 

Queremos saber se existem 𝑎, 𝑏, 𝑐	 ∈ 	ℝ	𝑡𝑎𝑖𝑠	𝑞𝑢𝑒: 

𝑎𝑢. + 𝑏𝑢( + 𝑐𝑢! = (1,3,6) 

 

Isto é: 

𝑎(1,2,3) + 𝑏(2,3,4) + 𝑐(3,2,1) = (1,3,6) 

 

Igualando coordenadas, obtemos o sistema: 

<
𝑎 + 2𝑏 + 3𝑐 = 1
2𝑎 + 3𝑏 + 2𝑐 = 3
3𝑎 + 4𝑏 + 𝑐 = 6

 

 

Matriz aumentada: 

(
1 2 3
2 3 2
3 4 1

	/	
1
3
6
	0
$!*($"
1⎯⎯⎯3	(

1 2 3
0 −1 −4
3 4 1

	/	
1
1
6
	0
$#*!$"
1⎯⎯⎯3	(

1 2 3
0 −1 −4
0 −2 −8

	/	
1
1
3
	0
$#*($!
1⎯⎯⎯3	(

1 2 3
0 −1 −4
0 0 0

	/	
1
1
1
	0 

 

A última linha corresponde à equação: 

0𝑎 + 0𝑏 + 0𝑐 = 1	 ⟺ 0 = 1, que é impossível. 

 

Logo o sistema é incompatível e, portanto 𝑏 = (1,3,6) não é combinação linear de 

(1,2,3), (2,3,4), (3,2,1). 

 

5.2. 

Temos que: 

𝑈 = ⟨(1,2,3), (2,3,4), (3,2,1)⟩ 

 

Irei chamar de: 

𝑢. = (1,2,3) 𝑢( = (2,3,4) 𝑢! = (3,2,1) 
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Na alínea 5.1 chegamos a matriz: 

𝐴 = (
1 2 3
2 3 2
3 4 1

0, e após escalonar obtivemos (
1 2 3
0 −1 −4
0 0 0

0 

 

Esta matriz tem duas linhas não nulas, logo 

𝑟𝑎𝑛𝑘(𝐴) 	= 	2 

 

Isto significa que os três vetores 𝑢., 𝑢(, 𝑢! são linearmente dependentes e que o 

subespaço 𝑈 tem dimensão: 

dim𝑈 = 2 

 

Como as duas primeiras colunas correspondem a pivots, podemos tomar 

𝐵= = {𝑢., 𝑢(} = {(1,2,3), (2,3,4)}, como base de 𝑈. 

 

Queremos agora encontrar um vetor de ℝ! que não pertença a 𝑈, para juntar a 𝐵=. 

 

Consideremos, por exemplo o vetor 𝑣. = (1,0,0). 

Supomos que 𝑣. ∈ 𝑈. Então existem 𝛼, 𝛽	 ∈ 	ℝ tais que: 

𝛼𝑢. + 𝛽𝑢( = 𝑣. 

 

Transformando em sistema: 

<
𝛼 + 2𝛽 = 1
2𝛼 + 3𝛽 = 0
3𝛼 + 4𝛽 = 0

	⟺ <
𝛼 = 1 − 2𝛽
2𝛼 + 3𝛽 = 0
3𝛼 + 4𝛽 = 0

⟺ W
𝛼 = 1 − 2𝛽

2(1 − 2𝛽) + 3𝛽 = 0
3𝛼 + 4𝛽 = 0

⟺ 𝛽 = 2

⟺ W
𝛼 = 1 − 2(2) ⟺ 𝛼 = −3

2(1 − 2𝛽) + 3𝛽 = 0 ⟺ 	𝛽 = 2
3𝛼 + 4𝛽 = 0

	⟺ W
𝛼 = 1 − 2(2) ⟺ 𝛼 = −3

2(1 − 2𝛽) + 3𝛽 = 0 ⟺ 	𝛽 = 2
3(−3) + 4(2) = 0 ⟺ −1 = 0

 

 

Obtemos uma contradição pois −1 ≠ 0, portanto o sistema não tem solução e 𝑣. =

(1,0,0) ∉ 𝑈. Assim o conjunto 𝐵 = {𝑢., 𝑢(, 𝑣.} = {(1,2,3), (2,3,4), (1,0,0)} é formado por 

uma base de 𝑈 ∶ (1,2,3), (2,3,4), mais um vetor 𝑣. = (1,0,0) que não está em 𝑈. Logo 𝐵 

é linearmente independente e tem 3 vetores em ℝ!, pelo que é uma base de ℝ!. 
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5.3. 

Na alínea 5.2 sabemos que uma base de 𝑈 é: 

𝐵= = {𝑢., 𝑢(} = {(1,2,3), (2,3,4)}, 

 

Logo, qualquer vetor de 𝑈 pode ser escrito como: 

𝑣(",&) = 𝑎𝑢. + 𝑏𝑢(, onde 𝑎, 𝑏 ∈ 	ℝ 

 

Isto resulta em: 

𝑣(",&) = 𝑎(1,2,3) + 𝑏(2,3,4) = (𝑎 + 2𝑏, 2𝑎 + 3𝑏, 3𝑎 + 4𝑏) 

 

Portanto, um vetor de 𝑈 tem a forma de: 

(𝑥, 𝑦, 𝑧) = (𝑎 + 2𝑏, 2𝑎 + 3𝑏, 3𝑎 + 4𝑏) 

 

Para pertencer a 𝑉 tem de satisfazer: 

2𝑥 + 3𝑦 + 9𝑧 = 0 
 

Substituindo 𝑥, 𝑦, 𝑧: 

2(𝑎 + 2𝑏) + 3(2𝑎 + 3𝑏) + 9(3𝑎 + 4𝑏) = 0 ⟺ 2𝑎 + 4𝑏 + 6𝑎 + 9𝑏 + 27𝑎 + 36𝑏 = 0 ⟺ 35𝑎 + 49𝑏

= 0 ⟺ 5𝑎 + 7𝑏 = 0 ⟺ 𝑎 = −
7
5𝑏 

Tomamos, por conveniência que, 𝑏 = 5𝑡 (para eliminar o denominador) e 

parametrizar o vetor assim ficamos com: 

𝑎 = −
7
55𝑡 = 𝑎 = −7𝑡 𝑏 = 5𝑡 

 

Logo, um vetor de 𝑈 ∩ V	é: 

𝑣(",&) = 𝑣(*@A,,A) = −7𝑡𝑢. + 5𝑡𝑢( = 𝑡(−7𝑢. + 5𝑢() 

 

Cálculo auxiliar de −7𝑢. + 5𝑢( 

−7(1,2,3) + 5(2,3,4) = (−7,−14,−21) + (10, 15, 20) = (3,1, −1) 

 

Portanto, 

𝑣(",&) = 𝑡(3,1, −1),			𝑡 ∈ ℝ 

 

𝑈 ∩ V = {𝑡(3,1, −1): 𝑡 ∈ ℝ}, logo 𝑈 ∩ V é um subespaço de dimensão 1, e uma base de 

𝑈 ∩ V é por exemplo {(3,1,-1)} 
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5.4. 

Sabemos das alíneas anteriores que: 

𝐵= = {𝑢., 𝑢(} = {(1,2,3), (2,3,4)}, logo como 𝐵= tem dois vetores 

dim(𝐵) = 2 

 

𝑉 = {(𝑥, 𝑦, 𝑧) ∈ 	ℝ!: 2𝑥 + 3𝑦 + 9𝑧 = 0}, é o conjunto de soluções de uma equação linear 

não trivial em ℝ!, portanto 

𝑑𝑖𝑚	(𝑉) = 3 − 1 = 2 

 

Na alínea anterior obtivemos que: 

U ∩ V = {𝑡(3,1, −1): 𝑡 ∈ ℝ} logo 

dim(U ∩ V) = 1 

 

Usando a fórmula das dimensões: 

dim(𝑈 + 𝑉) = dim(𝑈) + dim(𝑉) − dim(𝑈 ∩ 𝑉) = 2 + 2 − 1 = 3 

 

Como 𝑈 + 𝑉 é um subespaço de ℝ! e tem dimensão 3 concluímos que: 

𝑈 + 𝑉 = ℝ! 


