

U.C. 21048

Física Geral

22 de julho de 2015 – RESOLUÇÃO

INSTRUÇÕES

Leia com atenção o que se segue antes de iniciar a sua prova:

Verifique se o enunciado desta prova possui, para além desta folha de rosto, mais 5 páginas, numeradas de 2 a 6 e terminando com a palavra FIM.

O estudante não necessita de indicar qualquer resposta neste enunciado, pelo que poderá ficar na posse do mesmo finda a prova.

Este exame consta de duas partes:

- 1) A primeira é constituída por **6 questões de escolha múltipla**, em que apenas uma das respostas é correcta. **As respostas a estas questões devem ser feitas na folha de prova** (não neste enunciado). Indique de uma forma clara a alínea que corresponde à resposta que considera correta. Respostas que não sejam claras ou cuja interpretação seja ambígua serão consideradas **nulas**. Se desejar, pode incluir detalhes da sua resolução da questão. Se desses detalhes o professor verificar que respostas incorretas se deveram apenas a pequenos erros de cálculo, estas poderão ser parcialmente cotadas.
- 2) A segunda é composta por **4 questões estruturadas** de produção de resposta. Nestas respostas os parâmetros valorizados são:
 - O rigor científico do raciocínio usado, nomeadamente na identificação dos princípios físicos em jogo e na colocação do problema em equação.
 - O rigor dos cálculos efectuados, incluindo a expressão correta dos resultados (os valores numéricos com os algarismos significativos e unidades adequados) e a interpretação dos resultados (se aplicável). Os resultados devem ser apresentados com 2 ou 3 algarismos significativos.
 - A questão 4 está cotada entre 3 e 5 valores, conforme a complexidade dos cálculos e método numérico apresentados. A soma desta questão com as restantes é truncada a 20 valores.

Recomenda-se que:

- Leia com muita atenção as questões e selecione bem os dados e incógnitas antes de responder.
- Responda primeiro às questões que julgar mais acessíveis, e só depois às questões que considerar mais difíceis.
- Revejaas resoluções cuidadosamente antes de entregar a prova.

Pode utilizar a sua máquina de calcular mas não pode emprestá-la a qualquer dos seus colegas.

Duração: 2h:30 min

FORMULÁRIO E VALORES DE CONSTANTES FÍSICAS

$$\begin{split} \Sigma \vec{F} &= m \vec{a} \quad ; \quad |F_g = m g \quad ; \quad g = 9,8 \text{ m/s}^2 \quad ; \quad |f_s \leq \mu_e F_N \quad ; \quad f_k = \mu_c F_N \quad ; \quad F_{centrip} = m \frac{v^2}{R} \\ W &= \vec{F} \cdot \Delta \vec{r} \quad ; \quad E_c = \frac{1}{2} m v^2 \quad ; \quad E_\rho = -\int_{xi}^{xf} F_C(x) dx \quad ; \quad F_C = -\frac{dE_\rho}{dx} \quad ; \quad E_{pg} = m g h \quad ; \quad F_{elast,x} = -kx \quad ; \quad E_{\rho,elast} = \frac{1}{2} k x^2 \\ E_m &= E_c + E_\rho \quad ; \quad |W_{tot} = \Delta E_c \quad ; \quad W_C = -\Delta E_\rho \quad ; \quad W_{NC} = \Delta E_m \quad ; \quad P_{med} = \frac{\Delta E}{\Delta t} \quad ; \quad P = \vec{F} \cdot \vec{v} \\ \vec{P} &= m \vec{v} \quad ; \quad \vec{I} = \vec{F}_{ext} \Delta t \quad ; \quad \vec{I} = \Delta \vec{p} \\ F_G &= G \frac{M m}{r^2} \quad ; \quad V_G = -G \frac{M}{r} \quad ; \quad E_{\rho G} = m V_G \quad ; \quad G = 6,67 \times 10^{-11} \text{ N.m}^2 \text{.kg}^{-2} \quad ; \quad a_g \equiv g = G \frac{M}{r^2} \end{split}$$

Para uma ED do tipo $\frac{dx}{dt} = f(x,t)$ Euler/Runge-Kutta 1: $x_{i+1} = x_i + f(t_i, x_i)h$; $h = t_{i+1} - t_i$ Heun/Previsor-corretor/Runge-Kutta 2: $\begin{cases} x_{i+1}^{(P)} = x_i + f(t_i, x_i)h \\ x_{i+1} = x_i + \frac{f(t_i, x_i) + f(t_{i+1}, x_{i+1}^{(P)})}{2}h \end{cases}$; $h = t_{i+1} - t_i$ Nota : x_i , x_{i+1} são o mesmo que respetivamente $x(t_i)$, $x(t_{i+1})$.

PARTE I

- **1.** (**1,5 val**) Um avião Boeing 747 percorre 1100 m de pista em aceleração constante até descolar, 25,0 s depois do arranque. Qual a rapidez com que descola, em km/h?
 - **A.** 44 km/h
- **B.** 88 km/h
- **C.** 158 km/h
- **D.** 317 km/h
- E. 425 km/h
- **F.** 570 km/h

Trata-se de uma situação de MRUV. Da expressão $x = x_0 + v_0 t + \frac{1}{2} a t^2$ podemos achar a aceleração. Se repararmos bem, aqui $x - x_0 = 1100$ m e $v_0 = 0$. Isto leva a

1100 m =
$$\frac{1}{2}a(25.0 \text{ s})^2 \Leftrightarrow a = 3.52 \frac{\text{m}}{\text{s}^2}$$

Usando agora $v = v_0 + at$ obtemos a rapidez de descolagem, que é

$$v = (3.52 \frac{\text{m}}{\text{s}^2})(25.0 \text{ s}) = 88.0 \frac{\text{m}}{\text{s}} (317 \frac{\text{km}}{\text{h}})$$

- **2.** (1,5 val) Uma bola é deixada cair verticalmente de uma altura h, ressaltando no chão e subindo de volta até uma altura h/3. Seja V_1 a rapidez da bola à chegada ao solo antes do ressalto e V_2 a rapidez à chegada ao solo quando ela embate neste pela segunda vez. Quanto vale V_1/V_2 ?
 - **A.** 1/2
- **B.** 1/3
- **C.** 2
- **D.** 3
- **E.** $1/\sqrt{3}$
 - **F.** $\sqrt{3}$

No ressalto claramente a energia mecânica não é conservada, mas na queda de desde as alturas máximas (h, h/3) até ao solo, é-o. Assim, basta-nos aplicar $\Delta E_m = 0$ para a primeira queda e para a segunda. Fazendo a origem do potencial gravitacional no solo $(E_{pg} = 0 \text{ para } h = 0)$ e notando que nas alturas máximas a energia cinética da bola é zero temos:

$$\Delta E_m^{h \to \mathrm{solo}} = 0 \Leftrightarrow E_m(h) = E_m(\mathrm{solo}) \Leftrightarrow mgh = \frac{1}{2} m v_1^2 \Leftrightarrow v_1 = \sqrt{2gh}$$

$$\Delta E_m^{h/3 \to \text{solo}} = 0 \Leftrightarrow E_m \left(\frac{h}{3}\right) = E_m(\text{solo}) \Leftrightarrow mg \frac{h}{3} = \frac{1}{2} m v_2^2 \Leftrightarrow v_2 = \sqrt{2g \frac{h}{3}}$$

O quociente V_1/V_2 é então

$$\frac{v_1}{v_2} = \frac{\sqrt{2gh}}{\sqrt{2g\frac{h}{3}}} = \sqrt{\frac{2gh}{2g\frac{h}{3}}} = \sqrt{\frac{1}{1/3}} = \sqrt{3}$$

3. (1,5 val) Uma bola A, de 1,5 kg de massa, embate frontal e elasticamente a 2,0 m/s contra uma outra, B, inicialmente em repouso. Seja x a direção do movimento das bolas. Após o embate a velocidade final da bola A é $V_{Af} = +0,50$ m/s. Quais são a massa da bola B e a sua velocidade final?

A.
$$V_{Bf} = 3.5 \text{ m/s}$$
; $m_B = 0.90 \text{ kg}$

D.
$$V_{Bf} = 2.5 \text{ m/s}$$
; $m_B = 0.60 \text{ kg}$

B.
$$V_{Bf} = 3.5 \text{ m/s}$$
; $m_B = 0.60 \text{ kg}$

E.
$$V_{Bf} = 1.5 \text{ m/s}$$
; $m_B = 0.90 \text{ kg}$

C.
$$V_{Bf} = 2.5 \text{ m/s}$$
; $m_B = 0.90 \text{ kg}$

F.
$$V_{Bf} = 1.5 \text{ m/s}$$
; $m_B = 0.60 \text{ kg}$

Sendo a colisão frontal e elástica, conserva-se, além do momento linear, a energia cinética. Isto dános, segundo a direção do movimento e no SI,

$$\begin{cases} \text{(conservação do momento)} & m_A v_{Ai} + m_B v_{Bi} = m_A v_{Af} + m_B v_{Bf} \\ \text{(conserv. energia cinética)} & \frac{1}{2} m_A v_{Ai}^2 + \frac{1}{2} m_B v_{Bi}^2 = \frac{1}{2} m_A v_{Af}^2 + \frac{1}{2} m_B v_{Bf}^2 \\ \Leftrightarrow \begin{cases} (1,5)(2,0) + 0 = (1,5)(0,5) + m_B v_{Bf} \\ \frac{1}{2}(1,5)(2,0)^2 + 0 = \frac{1}{2}(1,5)(0,5)^2 + \frac{1}{2} m_B v_{Bf}^2 \end{cases}$$

A maneira mais simples continuar é obter $m_B v_{Bf}$ e notar que $m_B v_{Bf}^2 = m_B v_{Bf} (v_{Bf})$. Isto permite simplificar as expressões:

$$\Leftrightarrow \begin{cases} 2,25 = m_B v_{Bf} \\ 3,00 - 0,1875 = \frac{1}{2} m_B v_{Bf} (v_{Bf}) \end{cases} \Leftrightarrow \begin{cases} 2,25 = m_B v_{Bf} \\ 5,625 = 2,25 v_{Bf} \end{cases} \Leftrightarrow \begin{cases} m_B = \frac{2,25}{v_{Bf}} = \frac{2,25}{2,50} = 0,90 \text{ kg} \\ v_{Bf} = \frac{5,625}{2,25} = 2,5 \frac{m}{s} \end{cases}$$

- **4.** (**1,0 val**) Um automóvel acelera dos 0 aos 20,0 m/s em 4,00 s. As suas rodas têm 56,0 cm de raio. Quantas rotações descrevem as rodas neste movimento?
 - **A.** 71 rot
- **B.** 56 rot
- **C.** 43 rot
- **D.** 11 rot
- **E.** 8,9 rot
- **F.** 5,0 rot

A aceleração linear é de $a = \frac{\Delta v}{\Delta t} = \frac{20,0\frac{m}{s}-0}{4,00 \text{ s}} = 5,00 \frac{m}{s^2}$. Isto corresponde a uma aceleração angular de

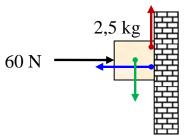
$$a = \alpha r \rightarrow \alpha = \frac{a}{r} \Leftrightarrow \alpha = \frac{5,00 \frac{\text{m}}{\text{s}^2}}{0,560 \text{ m}} = 8,93 \frac{\text{rad}}{\text{s}^2}$$

As rotações descritas são então de (do enunciado $\omega_0 = 0$)

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \rightarrow \Delta \theta = \frac{1}{2} \left(8.93 \frac{\text{rad}}{\text{s}^2} \right) (4.00 \text{ s})^2 = 71.44 \text{ rad}$$

Em rotações são (1 rot = 2π rad) 11,4 rotações.

5. (1,0 val) Um bloco de 2,5 kg de massa encontra-se encostado a uma parede, comprimido contra esta por uma força de 60 N (c.f. figura). Qual o valor mínimo do coeficiente de atrito estático que permite que o sistema se mantenha em equilíbrio?



- **A.** 2,4
- **B.** 1,5
- **C.** 0,92
- **D.** 0,41
- **E.** 0,15

Marcando as forças temos, além da força de compressão do enunciado, F, mais três: a normal (azul), o peso (verde) e o atrito estático (vermelho escuro). Para haver equilíbrio o sistema tem de obedecer à primeira lei de Newton, $\Sigma \vec{F} = 0$. Escolhendo um referencial xy usual temos

$$\Sigma \vec{F} = 0 \rightarrow \begin{cases} \Sigma F_x = 0 \\ \Sigma F_y = 0 \end{cases} \Leftrightarrow \begin{cases} F - F_N = 0 \\ -F_g + f_s = 0 \end{cases} \Leftrightarrow \begin{cases} 60 \text{ N} - F_N = 0 \\ -mg + f_s = 0 \end{cases} \Leftrightarrow \begin{cases} F_N = 60 \text{ N} \\ F_S = (2.5 \text{ kg}) \left(9.8 \frac{\text{m}}{\text{s}^2}\right) = 24.5 \text{ N} \end{cases}$$

Notando agora que $f_S \le \mu_S F_N \to f_S^{max} = \mu_S F_N$ temos que o mínimo valor de μ_S que permite o equilíbrio é

$$f_s^{max} = \mu_s F_N \Leftrightarrow \mu_s = \frac{24,5 \text{ N}}{60 \text{ N}} = 0,41$$

6. (1,5 val) Em Física, denominamos por "oscilador amortecido" um sistema massa-mola com força resistiva proporcional à velocidade. A equação do movimento de um oscilador amortecido é

$$\frac{d^2x}{dt^2} - b\frac{dx}{dt} + \omega^2 x = 0$$

Com x a posição da massa, t o tempo, b e ω constantes relativas a caraterísticas físicas do sistema. Identifique a variável dependente, a variável independente e os parâmetros desta equação diferencial. (Indique na folha de prova quatro respostas.)

x é:

A. A variável dependente **D.** A variável dependente

B. A variável independente **E.** A variável independente

C. Um parâmetro **F.** Um parâmetro

b é: ω é:

G. A variável dependente **J.** A variável dependente

H. A variável independente **K.** A variável independente

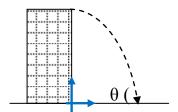
I. Um parâmetro **L.** Um parâmetro

O que se pretende saber da ED é a posição como função do tempo, i.e. x(t). Assim, a posição x é a variável dependente, o tempo t a variável independente e b e ω são parâmetros.

PARTE II

1. Um projétil é lançado horizonalmente, a 2,3 m/s, do topo de um edifício de altura desconhecida. Ao fim de 3,5 s chega ao solo. Tratando o projétil como um corpo aproximadamente pontual, Calcule:

- a. (0,8 val) A distância d, medida na horizontal, de desde a borda inferior do edifício até ao local de embate no solo.
- **b.** (**0,8 val**) A altura *h* do edifício.
- c. (1,4 val) O ângulo θ que o vetor velocidade do projétil faz com a horizontal no instante de embate no solo.



6

(a) Segundo a horizontal o movimento de um projétil é um MRU. No referencial xy usual que colocámos na figura, este é descrito por

$$x = x_0 + v_{0x}t \rightarrow x = 0 + \left(2,3\frac{\text{m}}{\text{s}}\right)t$$

Ao fim de 3,5 s o projétil encontra-se em

$$d = \left(2.3 \frac{\text{m}}{\text{s}}\right) (3.5 \text{ s}) = 8.05 \text{ m} (8.0 \text{ m})$$

(b) Segundo a vertical, um projétil descreve um MRUV. Temos então, novamente no referencial xy,

$$y = y_0 + v_{oy}t + \frac{1}{2}at^2 \rightarrow y = h + 0 - \left(4.9 \frac{\text{m}}{\text{s}^2}\right)t^2$$

Como sabemos que a queda, i.e. y = 0, se dá ao fim de 3,5 s vem

$$0 = h - (4.9 \frac{\text{m}}{\text{s}^2}) (3.5 \text{ s})^2 \Leftrightarrow h = 60 \text{ m}$$

(c) Para determinar θ precisamos das componentes vetor velocidade. Já sabemos a sua componente horizontal, que é 2,3 m/s (enunciado). A componente vertical é

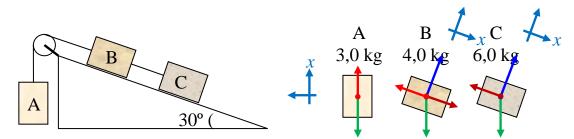
$$v_y = v_{0y} + at \rightarrow v_y = 0 - \left(9.8 \frac{\text{m}}{\text{s}^2}\right) t \Leftrightarrow v_y = -34.3 \frac{\text{m}}{\text{s}}$$

O ângulo é então

$$\operatorname{tg} \theta = \frac{v_y}{v_x} \Leftrightarrow \theta = \operatorname{arctg} \left(\frac{-34,3\frac{\mathrm{m}}{\mathrm{s}}}{2,3\frac{\mathrm{m}}{\mathrm{s}}} \right) = -86,2^{\circ}$$

O sinal negativo significa que o ângulo é para baixo da horizontal (na figura está apresentado o que na verdade é o simétrico deste ângulo).

2. Na figura abaixo os blocos A, B e C têm massas de respetivamente 3,0 kg; 4,0 kg e 6,0 kg. A inclinação do plano é de 30° e não há atrito.



Considere os três blocos como corpos pontuais e:

- **a.** (1,0 val) Copie para a sua folha de prova o desenho dos três corpos na metade direita e marque nele as forças que atuam sobre os corpos.
- **b.** (2,0 val) Calcule a aceleração do sistema e as tensões nas cordas (designe por F_{T1} a tensão na corda entre A e B e F_{T2} a tensão entre B e C).
- (a) Forças marcadas no desenho. Azul escuro: normais, verde: pesos, vermelho: tensões F_{T1} (claro) e F_{T1} (escuro). Marcámos também na figura, a azul claro, um referencial local, ao longo da corda, i.e. da direção do movimento.
- (b) No referencial local indicado a 2^a lei de Newton, $\Sigma \vec{F} = m\vec{a}$, dá-nos, após projeção no referencial,

$$\Sigma \vec{F} = m\vec{a} \rightarrow \begin{cases} A, x: & -F_{gA} + F_{T1} = m_A a & (1) \\ B, x: & -F_{T1} + F_{T2} + F_{gB} \sin 30 = m_B a & (2) \\ B, y: & -F_{gB} \cos 30 + F_{NB} = 0 & (3) \\ C, x: & -F_{T2} + F_{gC} \sin 30 = m_C a & (4) \\ C, y: & -F_{gC} \cos 30 + F_{NC} = 0 & (5) \end{cases}$$

Nem todas estas equações vão ser necessárias para resolver o problema. Na verdade, apenas as equações segundo os *xx* interessam (1, 2, 4). As equações segundo os *yy* (3, 5) só seriam necessárias se houvesse atrito ou outras forças de tração.

Somando as equações 1, 2 e 4 as tensões cancelam e temos, no SI,

$$(1) + (2) + (4) \rightarrow \left(-F_{gA} + F_{T1}\right) + \left(-F_{T1} + F_{T2} + F_{gB} \operatorname{sen} 30\right) + \left(-F_{T2} + F_{gC} \operatorname{sen} 30\right)$$

$$= m_A a + m_B a + m_C a \Leftrightarrow -m_A g + m_B g \frac{1}{2} + m_C g \frac{1}{2} = (m_A + m_B + m_C) a$$

$$\Leftrightarrow \left(-m_A + \frac{1}{2} m_B + \frac{1}{2} m_C\right) g = (m_A + m_B + m_C) a \Leftrightarrow a$$

$$= g \left(\frac{-3.0 + \frac{1}{2} 4.0 + \frac{1}{2} 6.0}{3.0 + 4.0 + 6.0}\right) \Leftrightarrow a = \frac{2}{13} g = 1.507 \frac{\mathrm{m}}{\mathrm{s}^2} \left(1.5 \frac{\mathrm{m}}{\mathrm{s}^2}\right)$$

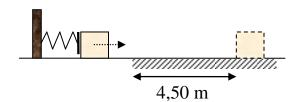
O valor positivo significa que o Substituindo este resultado em (1) e (4) obtemos as tensões. A 2 A.S. temos

$$(1) \rightarrow -F_{gA} + F_{T1} = m_A a \Leftrightarrow F_{T1} = (3.0 \text{ kg}) \left(1.507 \frac{\text{m}}{\text{s}^2} \right) + (3.0 \text{ kg}) \left(9.8 \frac{\text{m}}{\text{s}^2} \right) = 33.9 \text{ N} \quad (34 \text{ N})$$

$$(4) \rightarrow -F_{T2} + F_{gC} \sin 30 = m_C a \Leftrightarrow F_{T2} = (6.0 \text{ kg}) \left(9.8 \frac{\text{m}}{\text{s}^2} \right) - (6.0 \text{ kg}) \left(1.507 \frac{\text{m}}{\text{s}^2} \right)$$

$$= 49.8 \text{ N} \quad (50 \text{ N})$$

3. Uma massa de 3,60 kg é acoplada a uma mola. A mola é comprimida de 8,00 cm e largada, desprendendo-se dela a massa a uma rapidez de 2,80 m/s. A massa entra numa zona com atrito, imobilizando-se após ter percorrido 4,50 m nesta (c.f. figura).



Questões:

- **a.** (**0,5 val**) Calcule o impulso recebido pela massa desde a compressão da mola até ao seu desprendimento.
- **b.** (0,5 val) Determine a constante elástica da mola.
- c. (1,0 val) Calcule o coeficiente de atrito cinético entre a massa e a zona com atrito.
- **d.** (1,0 val) Descreva as transformações de energia que ocorreram no sistema desde a compressão da mola até ao imobilizar da massa.

(a) Sejam 'i' e 'f' os instantes respetivamente de compressão máxima da mola e de desprendimento da massa. Aplicando o teorema de impulso-momento temos, segundo a direção do movimento

$$I = \Delta p \Leftrightarrow I = p_f - p_i \Leftrightarrow I = mv_f - 0 = (3,60 \text{ kg}) \left(2,80 \frac{\text{m}}{\text{s}}\right) = 10,08 \text{ N. s} \quad (10,1 \text{ N. s})$$

(b) Durante a expansão da mola só atua a força elástica, que é conservativa. Da definição $E_{p,elast} = \frac{1}{2}kx^2$ e da conservação de energia mecânica vem

$$E_{mi} = E_{mf} \Leftrightarrow E_{p,elast}^{i} + E_{ci} = E_{p,elast}^{f} + E_{cf} \Leftrightarrow \frac{1}{2}kx^{2} + 0 = 0 + \frac{1}{2}mv_{f}^{2} \Leftrightarrow k = \frac{mv_{f}^{2}}{x^{2}} \Leftrightarrow k$$

$$= \frac{(3,60 \text{ kg}) \left(2,80 \frac{\text{m}}{\text{s}}\right)^{2}}{(0,0800 \text{ m})^{2}} = 4410 \frac{\text{N}}{\text{m}} \left(4,41 \frac{\text{kN}}{\text{m}}\right)$$

(c) Na derrapagem apenas atua a força de atrito, que é não-conservativa. Sejam agora 'i' e 'f' os instantes respetivamente de desprendimento da massa e de término da derrapagem. Do corolário $W_{NC} = \Delta E_m$ temos

$$W_{NC} = E_{mf} - E_{mi} \Leftrightarrow W_{NC} = 0 - \frac{1}{2}mv_i^2$$

Todo este trabalho não-conservativo é devido à força de atrito cinético, logo $W_{NC} = -\frac{1}{2}mv_i^2$. Combinando este resultado com a definição de trabalho $(W_F = \vec{F} \cdot \Delta \vec{r})$ e a forma da força de atrito cinético $(f_k = \mu_k F_N = \mu_k mg)$ vem

$$\begin{split} W_{f_k} &= \vec{f_k} \cdot \Delta \vec{r} = -\frac{1}{2} m v_i^2 \Leftrightarrow f_k \Delta r \cos \sphericalangle(F, \Delta r) = -\frac{1}{2} m v_i^2 \Leftrightarrow \mu_k m g \Delta r (-1) = -\frac{1}{2} m v_i^2 \Leftrightarrow \mu_k \\ &= \frac{v_i^2}{2g \Delta r} \Leftrightarrow \mu_k = \frac{\left(2,80 \frac{\text{m}}{\text{s}}\right)^2}{2\left(9,8 \frac{\text{m}}{\text{s}^2}\right)(4,5 \text{ m})} = 0,088 \end{split}$$

- (d) No pico da compressão toda a energia mecânica do sistema está na forma de energia potencial elástica. Soltada a corda a essa energia é progressivamente transformada em energia cinética da massa, até que, no momento do desprendimento, toda a energia é cinética. Chegada à zona com atrito, a massa vai perdendo gradualmente essa energia cinética, que vai sendo transformada em aquecimento da própria massa e do solo.
- **4.** (**de 3,0 val a 5,0 val**) O arrasto do ar é uma força que é aproximadamente proporcional ao quadrado da velocidade. No entanto, não é exatamente igual: além do termo quadrático existem termos lineares, cúbicos, etc. Se incluírmos p.ex. um termo linear num problema de queda de um grave, a 2ª lei de Newton torna-se

$$m\frac{dv}{dt} = -av - bv^2 + g$$

(g = aceleração da gravidade, +y para baixo) Obtenha uma expressão aproximada para a rapidez de um grave, largado do repouso, de 0,40 kg com a = 0,10 kg.s e b = 0,80 kg/m no primeiro segundo da queda. Utilize o método de Euler ou Heun/previsor-corretor (pontos extra se resolver por Heun) com um passo temporal de 0,20 s e execute as cinco iterações necessárias (pontos extra se fizer mais).

Fazendo uma tabela vem

Instante	Rapidez Euler (m/s)	Previsor Euler f(t,v)	Rapidez Heun (m/s)	Previsor Heun f(t,v)	Corretor Heun $f(t,v^P)$
0	0	9,8	0	9,8	1,6268
0,2	1,96	1,6268	1,14268	6,902894835	-3,564486371
0,4	2,28536	-1,217080659	1,476520846	5,070642169	-3,229329993
0,6	2,041943868	0,950444512	1,660652064	3,869306429	-2,662338838
0,8	2,23203277	-0,721948769	1,781348823	3,008255535	-2,153127317
1	2,087643017	0,561582517	1,866861645	2,362939786	-1,730911283

Os resultados são algo diferentes porque o problema é muito sensível ao passo. Passos maiores causam instabilidade numérica. Se se continuar as contas vamos verificar que a velocidade estabiliza no valor terminal é $v_t = 2,152 \frac{\text{m}}{\text{s}}$, valor que pode ser obtido analiticamente (experimente!).